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In this talk, I’ll give not only a summary of my own recent work,  
but also a broader overview of existing results on perturbative 

heterotic compactifications & (0,2) SCFT’s.

To that end, what are some of the larger issues ?

• Nontrivial IR fixed points in 2d GLSM’s

Likely:  CY compactifications, but even these are subtle 
(eg, stability)

Non-Kahler constructions (Adams et al, Melnikov, Quigley, Sethi, Stern, …)

Last week, GGP gave exs of non-CY GLSM’s with nontriv’ IR.

Related:  susy breaking?  Most work over the last decade or so 
has focused on IR nontriv’, but, recently some have started 

looking at susy breaking in 2d theories.



What are some of the larger issues in (0,2) ?
• Dualities

(0,2) mirror symmetry — some significant progress made 
(Adams-Basu-Sethi, Melnikov-Plesser),  but mostly still an open subject.

Gauge dualities motivated by or inherited from 4d 
(eg Gadde-Gukov-Putrov, Kutasov-Lin)

Other 2d dualities not motivated by 4d, incl. 
abelian/nonabelian dualities, decomposition.

We’ll look at these in more detail later.



What are some of the larger issues in (0,2) ?
• Nonperturbative corrections

What’s the analogue of Gromov-Witten invariants in (0,2) ?

Analogue computed by quantum sheaf cohomology 
(Katz, ES, Donagi, Guffin, McOrist, Melnikov, …)

Computations exist in many cases,  
but more remains to be done.

Unfortunately neither std GW computational techniques nor 
susy localization are applicable.

In particular, understanding q.s.c. surely important if we’re to 
ever properly understand (0,2) mirrors.



What are some of the larger issues in (0,2) ?
• Moduli

— non-Kahler moduli:  much progress (Melnikov-ES, Anderson-Gray-
ES, de la Ossa-Svanes), but still questions.

— surprises in infinitesimal CY moduli: complex/bundle 
intertwined (Anderson-Gray-Lukas-Ovrut …)

— some moduli are obstructed by eg nonpert’ corrections

In today’s talk, I’m going to walk through many of these issues 
in more detail….
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Review of quantum sheaf cohomology

Dualities
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Brief overview of moduli

Today I’ll outline progress in a few of these areas:

• Gauge bundle dualization duality
• Geometry of Seiberg(-like) dualities
• Abelian/nonabelian dualities & more complicated ex’s
• Decomposition in 2d:  SU(2) = SO(3)+ + SO(3)-

• (0,2) mirror symmetry



Review of quantum sheaf cohomology

Quantum sheaf cohomology is the heterotic version of 
quantum cohomology.

Encodes nonperturbative corrections to charged matter 
couplings.

Example:  (2,2) compactification on CY 3-fold
Gromov-Witten invariants encoded in       couplings27

3

Off the (2,2) locus, Gromov-Witten inv’ts no longer relevant.
Mathematical GW computational tricks no longer apply.
No known analogue of periods, Picard-Fuchs equations.

New methods needed….
… and a few have been developed.



Review of quantum sheaf cohomology

Quantum sheaf cohomology is the heterotic version of 
quantum cohomology.

Ex:  ordinary quantum cohomology of Pn

![x] / (xn+1 − q)

Check:  When E=T, this becomes ![x, y] / (xn+1 − q1, yn+1 − q2 )

Ex: quantum sheaf cohomology of Pn × Pn
with bundle

0→O⊕O→
*
O(1,0)n+1⊕O(0,1)n+1→ E→ 0

where
*= Ax Bx

C!x D!x
⎡

⎣
⎢

⎤

⎦
⎥

is given by ![x, y] / ( det(Ax + By)− q1, det(Cx + Dy)− q2 )

homog’ coord’s on     ‘sx, !x Pn



Review of quantum sheaf cohomology

Ordinary quantum cohomology
= OPE ring of the A model TFT in 2d

The A model is obtained by twisting along U(1)V

In a heterotic (0,2) NLSM, if detE* ≅ KX

then there is a nonanomalous U(1) we can twist along.

Result:  a pseudo-topological field theory, ``A/2 model’’

Quantum sheaf cohomology
= OPE ring of the A/2 model



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

When does that OPE ring close into itself?

(2,2) susy not required.

For a SCFT, in a neighborhood of the (2,2) locus, 
can use combination of

• worldsheet conformal invariance
• right-moving N=2 algebra

to argue closure.
(Adams-Distler-Ernebjerg, ’05)

The mathematics can be defined in greater generality….



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

A model:

Operators bi1!ip ı1!ıq
χ ı1!χ ıq!χ i1!χ ip ↔ H p,q (X)

A/2 model:
Operators: bı1!ına1!ap

ψ +
ı1!ψ +

ınλ−
a1!λ−

ap ↔ H n (X,∧ p E*)

On the (2,2) locus, A/2 reduces to A.
For operators, follows from

H q (X,∧ pT *X)= H p,q (X)



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

A model:

A/2 model:

〈O1!On 〉 = ω1X∫ ∧!∧ω n = top-form( )
X∫

Classical contribution:

ω i ∈H
pi ,qi (X)

Classical contribution:
〈O1!On 〉 = ω1X∫ ∧!∧ω n

ω1 ∧!∧ω n ∈H
top (X,∧ topE*) = Htop (X,KX )Now,

using the anomaly constraint
Again, a top form, so get a number.



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

Instanton sectors have the same form, 
except X replaced by moduli space M of instantons, 
E replaced by induced sheaf F over moduli space M.

Must compactify M, 
and extend F over compactification divisor.

∧ topE* ≅ KX

ch2(E)= ch2(TX) }⇒
GRR

∧ topF* ≅ KM



Review of quantum sheaf cohomology
Outline of mathematical computations:

0→W ⊗O→ Z *→ F→ 0

Correlation functions are maps
Symm(H1(F*)) (=SymmW)→Hm(∧ top F*) =!

for m = rank F.
That map is induced by a class in

Extm (SymmW⊗OM ,∧ top F*  )
corresponding to the Koszul res’n
0→∧m F*→∧m Z→∧m−1 Z⊗W →∧m−2 Z⊗Sym2W

!→ Z⊗Symm−1W →SymmW⊗OM →  0

The map we want is induced by the sequence above….



Review of quantum sheaf cohomology
Outline of mathematical computations:
0→∧m F*→∧m Z→∧m−1 Z⊗W →∧m−2 Z⊗Sym2W

!→ Z⊗Symm−1W →SymmW⊗OM →  0

This factors into short exact sequences of the form
0→ Si →∧i Z⊗Symm−iW → Si−1→ 0

and the corresponding coboundary maps
δ :H i (Si )→H i+1(Si+1)

factor the map determining correlation functions:
H 0 (SymmW ⊗O)→H 1(S1)→

δ
H 2 (S2 )→

δ
!→

δ
Hm−1(Sm−1)→

δ
Hm (∧ topF*)

So, to evaluate correlation functions, 
compute coboundary maps.



Review of quantum sheaf cohomology
Outline of mathematical computations:

The map determining correlation functions:

To evaluate correlation functions, compute coboundary maps.

OPE’s emerge as the kernel of those maps.

So, briefly, OPE’s determined where coboundaries fail to be 
isomorphisms.

H 0 (SymmW ⊗O)→H 1(S1)→
δ
H 2 (S2 )→

δ
!→

δ
Hm−1(Sm−1)→

δ
Hm (∧ topF*)



Review of quantum sheaf cohomology

So far, I’ve outlined mathematical computations of quantum 
sheaf cohomology, but GLSM-based methods also exist:

• Quantum cohomology  ( (2,2) ):

• Quantum sheaf cohomology  ( (0,2) ):

Morrison-Plesser ‘94

McOrist-Melnikov ‘08

Let’s quickly review these methods….



Review of quantum sheaf cohomology

GLSM-based quantum sheaf cohomology computations:

0→W ⊗O →
(A(α )

a ) j
i Φ(α )

j

⊕α Vα ⊗O(
!qα )→ E→ 0

D+Λ
i = Σa A(α )

a⎡⎣ ⎤⎦ j
i
Φ(α )

j(0,2) Fermi superfields defined by
or equiv’ly bundle E defined by

Leff = d∫ θ + Υa
a
∑ log ∏α (detM (α ) )

Qα
a

/ qa⎡
⎣

⎤
⎦  

M (α ) = Σa
a
∑ A(α )

aDefine

then quantum correction to effective action of form

detM (α )( )Qα
a

α
∏ = qafrom which one derives

— match math’ computations

(McOrist-Melnikov ’08)

— these are q.s.c. rel’ns



Review of quantum sheaf cohomology

State of the art:  computations on toric varieties

To do:  compact CY’s

Intermediate step:  Grassmannians (work in progress)

Briefly, what we need are better computational methods.

Conventional GW tricks seem to revolve around idea that A 
model is independent of complex structure, 

not necessarily true for A/2.
• McOrist-Melnikov ’08 have argued an analogue for A/2
• Despite attempts to check (Garavuso-ES ‘13),

still not well-understood



Review of quantum sheaf cohomology

Dualities

Brief overview of moduli

Outline:

• Gauge bundle dualization duality
• Geometry of Seiberg(-like) dualities
• Abelian/nonabelian dualities & more complicated ex’s
• Decomposition in 2d:  SU(2) = SO(3)+ + SO(3)-

• (0,2) mirror symmetry



( (0,2) susy )(0,2) mirror symmetry

Nonlinear sigma models with (0,2) susy defined by
space   , with gauge bundle E→ XX

Let’s begin our discussion of dualities with one of the oldest 
conjectured (0,2) dualities:  (0,2) mirrors.

S’pose (0,2) mirror defined by space Y, w/ gauge bundle F.

A/2( X, E )  =  B/2( Y, F )
H p (X,∧q E*)= H p (Y ,∧q F)

(moduli)  =  (moduli)

dim X  =  dim Y
rk E  =  rk F

When E=TX, should reduce to ordinary mirror symmetry.



( (0,2) susy )(0,2) mirror symmetry

Numerical evidence:

h1(E)− h1(E*)

h1(E)+ h1(E*)

Horizontal:

Vertical:

(E rank 4)
(Blumenhagen-Schimmrigk-Wisskirchen, !

NPB 486 (’97) 598-628)



( (0,2) susy )(0,2) mirror symmetry

Constructions include:

• Adams-Basu-Sethi ’03 repeated Hori-Vafa-Morrison-Plesser-style GLSM 
duality in (0,2)

• Melnikov-Plesser ’10 extended Batyrev’s construction & monomial-
divisor mirror map to include def’s of tangent bundle, for 

special (‘reflexively plain‘) polytopes

• Blumenhagen-Sethi ’96 extended Greene-Plesser orbifold 
construction to (0,2) models — handy but only gives special 

cases

Lots of progress, but still don’t have a general construction.



( (0,2) susy )Gauge bundle dualization duality
(Nope, not a typo….)

Nonlinear sigma models with (0,2) susy defined by
space   , with gauge bundle E→ XX

Duality: CFT(        )  =  CFT(         )X,E X,E*

ie, replacing the gauge bundle with its dual 
seems to be an invariance of the theory.

Let’s outline some checks….

(A/2-B/2 in ES ’06; complete in Gadde-Gukov-Putrov ’13, Jia-ES-Wu ’14)



Gauge bundle dualization duality ( (0,2) susy )

Check that (0,2) theory invariant under E↔ E*:
• Action invariant:

L = 1
2
gµν ∂φ

µ ∂φν + i
2
gµνψ +

µDzψ +
ν + i

2
hαβλ−

αDzλ−
β + Fiȷabψ +

iψ +
ȷλ−

aλ−
b

Under            ,E↔ E* λ−
a ↔ λ−

b F↔− F&
so we see the Lagrangian is invariant.

• Consistency conditions:
ch2(E)= ch2(TX) invariant under E↔ E*

• Massless spectra:
h• (X,∧•E), h• (X,EndE) invariant under E↔ E*

hp (X,∧q E*)≅ hn−p (X,∧r−q E)using (Serre duality on CY)



Gauge bundle dualization duality ( (0,2) susy )

Check that (0,2) theory invariant under E↔ E*:

• Bundle must be `stable’: giȷFiȷ = 0
Math result:  a bundle is stable     iff     its dual is stable.

Tr (-)FR zJL qL0 qL0

= q−(2n+r )/24 Td
X∫ (TX)∧ ch(

k=1,2,3,!
⊗ S

qk
((TX)" )

k=1/2,3/2,5/2,!
⊗ ∧

qk
((zE)" ))

where (zE)! = zE⊕ zE*

• Elliptic genera:

Manifestly invariant under            , so long as also          .E↔ E* z↔ z

• Worldsheet instantons: A/2( X, E )   =   B/2( X, E* ) (ES ’06)



Gauge bundle dualization duality ( (0,2) susy )

Invariant understanding:

Physics only cares about the gauge field, 
ie, underlying principal bundle, 

not about an associated vector bundle.

What we’re really doing is changing the associated vector 
bundle (dual = bundle associated to dual rep), 

and physics shouldn’t care about that, 
hence CFT unchanged.

If we had CFT realizations of other associated vector bundles, 
those CFT’s should be the same too.



Gauge bundle dualization duality ( (0,2) susy )

How is this related to (0,2) mirrors?

Both exchange A/2, B/2 models, both flip sign of left U(1)…

Maybe orthogonal:
(X,E) (Y,F)

(X,E*) (Y,F*)

(0,2) mirror

(0,2) mirror

Dual Dual

Maybe notion of (0,2) mirrors is richer, 
& more variations exist to be found:

(X1,E1) (X2,E2) (X3,E3) (X4,E4)

Gadde-Gukov-Putrov’s triality (’13) seems to be in this spirit.



Dualities ( (0,2) & (2,2) susy )

So far we’ve discussed dualities that act nontrivially on target-
space geometries.

Next:  gauge dualities

We’ll first discuss how they present the same geometry, 
then turn to some examples specific to 2d, 

not inherited from / analogous to 4d gauge dualities.

Ex:  Gadde-Gukov-Putrov triality

Ex:  Kutasov-Lin reduction of 4d N=1 to 2d (0,2) dualities

At least sometimes, give different presentations of  
same geometry.



Geometric dualities ( (2,2) susy )

U(k) gauge group, 
matter:  n chirals in fund’ k, n>k,  

                    A chirals in antifund’ k*, A<n

= Tot (Q*)A →G(n-k,n)( )
generalizing G(k,n) = G(n-k,n)

NLSM on Tot SA →G(k,n)( )

U(n-k) gauge group, 
matter:  n chirals     in fund’ k,  

                  A chirals P in antifund’ k*, 
         nA neutral chirals M,  
superpotential:  W = M    P

Φ

Φ

Seiberg

(Physical duality at top proposed by Benini-Cremonesi ’12)

So, 2d analogue of Seiberg duality has geometric description.
Very handy in cases where few global symmetries exist.

0→ S→
Φ
On →Q→ 0Build GLSM for RHS using



Geometric dualities ( (2,2) susy )

The trick I’ve just outlined, 
implicitly assumes the geometries are either

• positively-curved (Fano)
• Calabi-Yau

If the space is negatively-curved, then in gen’l expect add’l 
contributions from discrete Coulomb vacua. 

I’ll restrict to Fano & CY for the next several slides….



Abelian/nonabelian dualities ( (2,2) susy )

A fun example is motivated by the geometry 
G(2,4) = degree 2 hypersurface in !P5

Result:
U(2) gauge theory, 

matter:  4 chirals     in fundamental 2

is Seiberg dual to

U(1) gauge theory, 
matter: 6 chirals zij = - zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
superpotential  

W = P(z12 z34 - z13 z24 + z14 z23)

φi



Abelian/nonabelian dualities ( (2,2) susy )

G(2,4) = degree 2 hypersurface in !P5

U(2) gauge theory, 
matter:  4 chirals    in 2

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
superpotential

φi

Compare symmetries: GL(4) action
φi
α !Vi

jφ j
α zij !Vi

kVj
ℓzkℓ

Relation: zij= εαβφi
αφ j

β

Chiral rings, anomalies, Higgs moduli space match 
automatically.

Can also show elliptic genera match, applying computational 
methods of Benini-Eager-Hori-Tachikawa ’13, Gadde-Gukov ‘13.



Abelian/nonabelian dualities ( (2,2) susy )

This extends to hypersurfaces & complete intersections:
G(2,4)[d1,d2,!]= P5[2,d1,d2,!]

U(1) gauge theory, 
6 chirals zij = -zji, i,j=1…4, of charge +1, 

one chiral P of charge -2, 
chirals Pa of charge -da, 

superpotential

U(2) gauge theory, 
matter:  4 chirals    in 2!
chirals pa of charge -da 

under det U(2) 
superpotential

φi

W = pa
a
∑ fa (εαβφi

αφ j
β ) W = P(z12z34 − z13z24 + z14z23)+ Pa

a
∑ fa (zij )

εαβφi
αφ j

β = zij
Straightforward extrapolation of previous duality,  

as one might hope.



Abelian/nonabelian dualities ( (2,2) susy )

G(2,4)[d1,d2,!]= P5[2,d1,d2,!]

Examples of this form illustrate the usefulness of geometry, 
in those cases in which it’s applicable.

Specifically:  superpotentials break global symmetries.

W/o global symmetries as a guide,  
finding dualities would be far more difficult.

In these examples, can instead use geometry to 
locate otherwise obscure dualities.



( (0,2) susy )Abelian/nonabelian dualities

G(2,4)[d1,d2,!]= P5[2,d1,d2,!]
Let’s build on our previous duality

by extending to heterotic cases.
Example:

Bundle 0→ E→⊕8 O(1,1)→O(2,2)⊕2 O(3,3)→ 0
on the CY G(2,4)[4].

U(2) gauge theoryDescribed by

4 chirals in fundamental
1 Fermi in (-4,-4) (hypersurface)
8 Fermi’s in (1,1) (gauge bundle E)
1 chiral in (-2,-2) (gauge bundle E)
2 chirals in (-3,-3) (gauge bundle E)

plus superpotential

rep’ of U(2)



Abelian/nonabelian dualities ( (0,2) susy )
Example:

Bundle 0→ E→⊕8 O(1,1)→O(2,2)⊕2 O(3,3)→ 0
on the CY G(2,4)[4].

Geometry predicts this is dual to

Bundle 0→ E→⊕8 O(1)→O(2)⊕2 O(3)→ 0
on the CY P5[2,4]

Checks: • both satisfy anomaly cancellation

• elliptic genera match

To make the duality work, we used the fact that reps defining 
bundle all live in det U(2)….



More complicated examples ( (2,2) susy )

Duality:  G(2,n) = Pfaffian
Mathematically,

G(2,n) = rank 2 locus of nxn matrix A over P
n
2

⎛
⎝⎜

⎞
⎠⎟
−1

Proposal:
U(2) gauge theory, n chirals in fundamental

dual to
U(n-2)xU(1) gauge theory, 

n chirals X in fundamental of U(n-2), 
n chirals P in antifundamental of U(n-2), 

(n choose 2) chirals zij = - zji of charge +1 under U(1), 
W = tr PAX

A(zij )=
z11 = 0
z21 = −z12
z31 = −z13

z12
z22 = 0
z32 = −z23

z13
z23

z33 = 0
! ! !

!
!
!
!

[ ]

Even more complicated possibilities exist.



Dualities ( (0,2) & (2,2) susy )

How do these gauge dualities relate to (0,2) mirrors?

As we’ve seen, gauge dualities often relate different 
presentations of the same geometry, 

whereas (0,2) mirrors exchange different geometries.

Existence of (0,2) mirrors seems to imply that there ought to 
exist more `exotic’ gauge dualities,  
that present different geometries.

On to a different duality….



More games in 2d you can’t play in 4d

Decomposition:

In a 2d orbifold or abelian gauge theory, 
if a finite subgroup of the gauge group acts trivially on all 

matter, the theory decomposes as a disjoint union.

Ex:
On LHS, the      acts triv’ly on X, 

hence there are dim’ zero twist fields. 
Projection ops are lin’ comb’s of dim 0 twist fields.

!2

Ex:

(Hellerman et al ’06)

CFT([X/!2 ]) = CFT X X⨿( )

CFT([X/D4 ]) where                acts trivially on X!2 ⊂ D4

= CFT [X/!2 ×!2 ]⨿ [X/!2 ×!2 ]d.t.( )
D4 /!2 =!2 ×!2where



More games in 2d you can’t play in 4d

Decomposition:

In a 2d orbifold or abelian gauge theory, 
if a finite subgroup of the gauge group acts trivially on all 

matter, the theory decomposes as a disjoint union.

(Hellerman et al ’06)

Ex in abelian gauge theory:

U(1)xU(1) gauge theory

Fields        with chargesxi , z
xi z
1 -n
0 k

For suitable FI, second U(1) almost eliminates z,  
except for residual ! k

Result is          with trivial      action!PN−1 ! k

variation of           model!PN−1



More games in 2d you can’t play in 4d

Decomposition: (Hellerman et al ’06)

Ex in abelian gauge theory: variation of           model!PN−1

U(1)xU(1) gauge theory

Fields        with chargesxi , z
xi z
1 -n
0 k

Can show quantum cohomology ring is
![x, y] / ( xN = qyn , yk = 1)

— Decomposition manifest.

Result is          with trivial      action!PN−1 ! k



More games in 2d you can’t play in 4d

Decomposition:
In that previous example, implicitly:

U(1) gauge theory with nonminimal charges
≠ U(1) gauge theory with minimal charges

Why?

Answer:  nonperturbative effects

Noncompact worldsheet:  distinguish via    periodicityθ

Compact worldsheet:  define charged field via specific bundle
(Adams-Distler-Plesser, Aspen ’04)



More games in 2d you can’t play in 4d

Extension of decomposition to nonabelian gauge theories:

Since 2d gauge fields don’t propagate, 
analogous phenomena should happen in nonabelian cases.
Result:

For G semisimple, with center-inv’t matter, 
G gauge theories decompose:

(ES, ’14)

Ex:   SU(2)  =  SO(3)+  +  SO(3)-

— SO(3)’s have different discrete theta angles



More games in 2d you can’t play in 4d

Extension of decomposition to nonabelian gauge theories:

Aside:  discrete theta angles

Consider 2d gauge theory, group G = !G /K
!G compact, semisimple, simply-connected
K finite subgroup of center of !G

λ(w)

The theory has a degree-two   -valued char’ classK w
For   any character of   , can add a term to the actionKλ

— discrete theta angles, classified by characters

Ex:                                  has 2 discrete theta anglesSO(3) = SU(2) /!2

(Gaiotto-Moore-Neitzke ’10, !
Aharony-Seiberg-Tachikawa ’13, Hori ‘94) 



More games in 2d you can’t play in 4d

Ex:   SU(2)  =  SO(3)+  +  SO(3)-

Let’s see this in pure nonsusy 2d QCD.

Z(SU(2))= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SU(2) reps

Z(SO(3)+ )= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SO(3) reps

Z(SO(3)− )= (dimR)2−2g
R
∑ exp(−AC2 (R)) Sum over all SU(2) reps 

that are not SO(3) reps

(Tachikawa ’13)

Result: Z(SU(2)) = Z(SO(3)+ )+ Z(SO(3)− )



More games in 2d you can’t play in 4d

More general statement of decomposition for 2d nonabelian 
gauge theories with center-invariant matter:

For G semisimple, K a finite subgp of center of G,

G = (G /K )λ
λ∈K̂
∑

indexes discrete  
theta angles



Review of quantum sheaf cohomology

Dualities

Brief overview of moduli

Outline:

• Gauge bundle dualization duality
• Geometry of Seiberg(-like) dualities
• Abelian/nonabelian dualities & more complicated ex’s
• Decomposition in 2d:  SU(2) = SO(3)+ + SO(3)-

• (0,2) mirror symmetry



Brief overview of moduli

It was known historically that for large-radius NLSM’s on the 
(2,2) locus, there were three classes of infinitesimal moduli:

Bundle moduli

Complex moduliH 1(X, )TX

Kahler moduliT *XH 1(X, )

H 1(X, )EndE

where, on (2,2) locus, E = TX

For many years it was falsely assumed that this would still be 
the case for CY compactification off the (2,2) locus, 

just change   .E

Nowadays, we know differently….



Brief overview of moduli

For Calabi-Yau (0,2) compactifications off the (2,2) locus, 
moduli are as follows:

H 1( where

0→ EndE TX→Q→ → 0
(Atiyah sequence)

There remained for a long time the question of moduli of  
non-Kahler compactifications….

(Anderson-Gray-Lukas-Ovrut, ‘10)

Kahler moduliT *XH 1(X, )

Q)

F( )



Brief overview of moduli

For non-Kahler (0,2) compactifications, 
in the formal              limit,′α → 0

(Melnikov-ES, ’11)
H 1(S) where

0→ EndE TX→Q→ → 0

0→ → S→ → 0T *X Q

Now, we also need     corrections….′α

F

H dH = 0

( )

( ),



Brief overview of moduli

H 1(S) where

0→ → S→ → 0T *X Q

0→EndE TX→Q→ → 0

Through first order in     ,  
the moduli are overcounted by

′α

(Anderson-Gray-ES ’14; de la Ossa-Svanes ’14)

⊕EndTX RF( ),

Green-SchwarzH( , )

Current state-of-the-art
WIP to find correct counting, & extend to higher orders



Brief overview of moduli

So far I’ve outlined infinitesimal moduli — marginal operators.

These can be obstructed by eg nonperturbative effects.

Dine-Seiberg-Wen-Witten ’86 observed that a single worldsheet 
instanton can generate a superpotential term obstructing def’s 

off (2,2) locus….

… but then Silverstein-Witten ’95, Candelas et al ’95, Basu-Sethi ’03, Beasley-
Witten ‘03 observed that for polynomial moduli in GLSM’s, the 

contributions of all pertinent worldsheet instantons cancel out.
— those moduli are unobstructed; math not well-understood.

Moduli w/o such a description can still be obstructed, see for 
example Aspinwall-Plesser ’11, Braun-Kreuzer-Ovrut-Scheidegger ‘07



Review of quantum sheaf cohomology

Dualities

Brief overview of moduli

Summary:

• Gauge bundle dualization duality
• Geometry of Seiberg(-like) dualities
• Abelian/nonabelian dualities & more complicated ex’s
• Decomposition in 2d:  SU(2) = SO(3)+ + SO(3)-

• (0,2) mirror symmetry


