The local Universe provides a unique and powerful way to explore galaxy formation and cosmological physics. Through measurements of the abundances, kinematics, and chemical composition of nearby systems that can be studied in exquisite detail, we can learn about the initial spectrum of cosmological density fluctuations, galaxy formation, dark matter physics, and processes at cosmic dawn that might otherwise remain unobservable. I will highlight some of the new and surprising results in this rapidly-changing subject of “near-field cosmology”, indicate how these results are driving advances in both astronomy and particle physics, and discuss the degree to which results in the local Universe can be interpreted in a much broader context.