Latest Results on Reactor Antineutrino Disappearance at Daya Bay

Over the past decade, terrestrial experiments have proven that neutrino oscillations explain the solar neutrino problem and the atmospheric neutrino anomaly. These phenomena rely on neutrino mixing between the first and second, and second and third, neutrino generations, respectively. However, other experiments put limits on mixing between the first and third generations, and suggested a rather small mixing angle θ_{13}. Knowledge of this mixing angle is critical if we are ever to use leptogenesis to explain the baryon asymmetry of the Universe. In March 2012, the Daya Bay Reactor Neutrino Experiment reported a conclusive measurement of θ_{13}, and the value turns out to be larger than most anyone expected. We will discuss recent measurements of this mixing angle, and the Daya Bay experiment in detail. Some focus will be on our results released in August 2013, on a combined analysis of event rate and spectral shape. We will conclude with potential consequences for the next generation of neutrino experiments, in the US and abroad.