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Maximal supergravities in various dimensions possess intriguing 
U-duality symmetries (         ,         , …).  E6(6)E7(7)

Many of these theories can 
be obtained by dimensional  
reduction of 11D supergravity  
or 10D IIB supergravity, e.g.

E7(7)

11D:

4D:

N=1

N=8 ungauged 
(         symmetry)

N=8  
SO(8) gauged 

An old question is how the higher-dimensional  
supergravities reflect the exceptional symmetries which 
are present in their lower dimensional ‘descendants’.

First approach: gauge equivalent rearrangement of degrees of freedom. 
For example, 11D supergravity was rewritten from a 4D perspective while 
retaining all the degrees of freedom. No truncation!

These reformulations exhibit features of the U-dualities.
de Wit, Nicolai, 1980’s



• Exceptional generalized geometry: extension of the tangent space to 
include the various p-forms associated with abelian gauge symmetries.

Unifies diffeomorphisms and p-forms gauge transformations  
in an enlarged symmetry group.  

• Exceptional field theory (EFT): extension of space-time in order for 
the coordinates to transform covariantly under the exceptional duality 
symmetry.

Koepsell, Nicolai, Samtleben, 2000
Coimbra, Strickland-Constable, Waldram, 2011

Godazgar, Godazgar, Nicolai, 2013
   etc…

New advances: rely on extended geometrical structures and/or spurious 
degrees of freedom.

Hohm, Samtleben, 2013
Samtleben, Musaev, 2014

Berman, Godazgar, Perry 2011

                                      etc…

Hillman 2009

Fully         -covariant theory.En(n)

A section constraint reduces the number of physical coordinates  
to (at most) 11.



The          EFT shares (most) of the field content and multiplet structure of 
gauged maximal supergravities in D=(11-n):

En(n)

⇢
eµ

↵, MMN , Aµ
M , (2  p)-forms

�
µ = 1, . . . , (11� n)

M = 1, . . . , dim
�
Rvec

�
Scalar matrix

         EFTEn(n)

x

µ

Y M

All fields depend on an extended set of coordinates: (xµ
, Y

M )

The EFT is uniquely determined by its gauge symmetries: 
• Internal generalised diffeomorphisms 

generated by  ⇤M (x, Y )

⇠

µ(x, Y )
• External diffeomorphisms 

generated by 

dual to @M

Ungauged maximal  
SUGRA

D=11-n:



The          EFT shares (most) of the field content and multiplet structure of 
gauged maximal supergravities in D=(11-n):

En(n)

⇢
eµ

↵, MMN , Aµ
M , (2  p)-forms

�
µ = 1, . . . , (11� n)

M = 1, . . . , dim
�
Rvec

�
Scalar matrix

All fields depend on an extended set of coordinates: (xµ
, Y

M )

11D:

The EFT is uniquely determined by its gauge symmetries: 
• Internal generalised diffeomorphisms 

generated by  ⇤M (x, Y )

⇠

µ(x, Y )
• External diffeomorphisms 

generated by 
10D:

x

µ

Y M

Ungauged maximal  
SUGRA

(massless) IIA IIB 

‘M theory’ 

         EFTEn(n)

D=11-n:

@M = 0

Section Constraint
• External diffeomorphisms 

generated by 

Consistency of the internal 
diffeomorphisms algebra requires  
a covariant section constraint. 

Recover physical theories in a 
Kaluza-Klein split. 

dual to @M



The          EFT shares (most) of the field content and multiplet structure of 
maximal gauged supergravities in D=(11-n):

En(n)

⇢
eµ

↵, MMN , Aµ
M , (2  p)-forms

�
µ = 1, . . . , (11� n)

M = 1, . . . , dim
�
Rvec

�
Scalar matrix

All fields depend on an extended set of coordinates: (xµ
, Y

M ) dual to 

11D:

10D:

Ungauged maximal  
SUGRA

(massless) IIA IIB 

‘M theory’ 

         EFTEn(n)

D=11-n:
x

µ

Y M

The EFT is uniquely determined by its gauge symmetries: 
• Internal generalised diffeomorphisms 

generated by  ⇤M (x, Y )

⇠

µ(x, Y )
• External diffeomorphisms 

generated by 

Recover physical theories in a 
Kaluza-Klein split. 

@M = 0

Section Constraint

Generalised diffeomorphisms then account for both the internal p-form 
gauge transformations and the ordinary internal diffeomorphisms.  !

@M

Consistency of the internal 
diffeomorphisms algebra requires  
a covariant section constraint. 



Recently, the manifest duality covariance of EFT’s was used to:
• compute gravitons scattering (on an extended torus):

Bossard, Kleinschmidt, 2015

Directly obtain U-duality invariant expressions for the coefficients 
of higher-derivative terms in the M-theory effective action. 

EFT’s provide an embedding of the eleven-dimensional and massless 
Type II supergravities in a manifestly U-duality covariant framework.

• Prove the consistency of classes of truncations of eleven-
dimensional and Type II supergravities:  

Generalised 
Scherk-Schwarz MMN (x, Y ) = UM

P (Y )UN
Q(Y )MPQ(x)

Twist matrix2 En(n)

Hohm, Samtleben, 2014
Malek, Samtleben, 2015

Hohm, Kwak, 2011

(How) can it be embed fully geometrically in EFT?

What about massive Type IIA supergravity?

Usually requires some (modest) form of non-geometry.
Massless IIA and IIB are the only solutions of the section constraint.

Baguet, Pope, Samtleben, 2015



Generalities of           EFT 
�Generalised diffeomorphisms act on covariant tensors (of weight    ) as a 

generalised Lie derivative:

• The vectors         covariantize the external derivatives:Aµ
M Dµ = @µ � LAµ

They transform as: �⇤Aµ
M = Dµ⇤

M Up to trivial 
gauge parameters!

(2  n < 8)

Under R+

• Two requirements for consistency of the theory:
• Closure of the generalised diffeomorphisms according to an E-bracket: 

with                 
⇥
L⇤,L⌃

⇤
= L[⇤,⌃]E

⇥
⇤,⌃

⇤M
E

⌘ 1

2

�
L⇤⌃

M � L⌃⇤
M
�

• Jacobi identity:               must be trivial parameters.

with                 L{•,•}E
= 0

�
⇤,⌃

 M

E
⌘ 1

2

�
L⇤⌃

M + L⌃⇤
M
�

Require 
section constraint:

Y MN
PQ @M ⌦ @N = 0

�
•, •

 M

E

En(n)

Distinguished weight

L⇤U
M = ⇤N@NUM � UN@N⇤M + Y MN

PQ @N⇤P UQ + (�� !) @P⇤
PUM

invariant En(n)

�⇤U
M = L⇤U

M



Example (n=4): SL(5) EFT
U-duality in D=7 maximal SUGRA 

• The theory contains vector fields                         in the 10 of SL(5).      Aµ
M ⌘ Aµ

[AB]

A,B = 1, . . . , 5 .

• The section constraint takes the form: "ABCDE @AB ⌦ @CD = 0

Upon the following branching: SL(4) SL(3)

IIB: @↵� 6= 0 , @45 = @↵5 = @↵4 = 02.

The two SL(5)-orbits of solutions to the section constraint are:
‘M-theory’: @a4 6= 0 , @ab = 0 IIA: @↵4 6= 0 , @45 = @↵5 = @↵� = 01.

It is defined on (7+10)-dimensional space coordinatized by   (xµ
, Y

AB)

Choosing the IIA solution,                                            reproduces the internal 
gauge transformations and diffeomorphisms of type IIA in a 7+3 KK split.

Aµ
AB = (Aµ

↵5 , Aµ
↵4 , Aµ

↵� , Aµ
45 )The 10 vectors decompose as

�⇤Aµ
AB = (@µ + L⇤)Aµ

AB

5 �! 4+ 1 �! 3+ 1+ 1
A �! (a , 4) �! (↵ , 5 , 4)

Musaev 2015



7+3 split of massless IIA

• Massless type IIA supergravity contains the p-forms:
R-R NS-NS

• Under their associated gauge transformations they transform as:

• We perform a 7+3 Kaluza-Klein split:                    

�Bµ
↵ = (@µ �Bµ

� @�) ⇠↵ + ⇠� @�Bµ
↵ ,

�Cµ = ⇠� @�Cµ + (@µ �Bµ
� @�)� ,

�Cµ� = ⇠� @�Cµ� + Cµ� @�⇠� + (@µ �Bµ
� @�)⌅� +Bµ

� @� ⌅� ,

�Cµ�� = ⇠� @�Cµ�� + 2Cµ�[� @�]⇠
� + (@µ �Bµ

� @�) ✓�� + 2Bµ
� @[�| ✓�|�]

+2Cµ @[�⌅�] � 2Cµ[� @�]� .

KK vector diffeo. parameter

One obtains 10 7D vectors. After standard KK redefinitions, they transform 
under internal diffeomorphisms and internal gauge transformations as:

10D 
spacetime

7D 
spacetime

3D internal
space

All fields still 
depend on  

10 coordinates!

Am, Amnp, Amn

x

m = (xµ
, y

↵)

�Am = @m� , �Amn = 2 @[m ⌅n] , �Amnp = 3 @[m ✓np] � 3A[mn @p]�



7+3 split of massive IIA

• The gauge transformations of the p-forms are deformed:

• The theory now contains a deformation (mass) parameter: 

Suggests a deformation of the generalised Lie derivative

The new terms cannot be recovered from EFT since: 

mR

�⇤Aµ
AB = (@µ + L⇤)Aµ

AB

• After the 7+3 Kaluza-Klein split and the same KK redefinitions, the 
internal gauge transformations of the 10 7D vectors become:

�Bµ
↵ = (@µ �Bµ

� @�) ⇠↵ + ⇠� @�Bµ
↵

�Cµ = ⇠� @�Cµ + (@µ �Bµ
� @�)��mR Bµ

� ⌅�

�Cµ� = ⇠� @�Cµ� + Cµ� @�⇠� + (@µ �Bµ
� @�)⌅� +Bµ

� @� ⌅�

�Cµ�� = ⇠� @�Cµ�� + 2Cµ�[� @�]⇠
� + (@µ �Bµ

� @�) ✓�� + 2Bµ
� @[�| ✓�|�]

+2Cµ @[�⌅�] � 2Cµ[� @�]��2mR Cµ[� ⌅�]

�Am = @m�+mR⌅m , �Amn = 2 @[m ⌅n] , �Amnp =3 @[m ✓np] � 3A[mn @p]�

�mR A[mn⌅p]



Deformed generalised Lie derivative 
• We define a modified Lie derivative by introducing a deformation 

parameter        which takes values in the Lie algebra of the U-duality 
group:

XM

eL⇤ = L⇤ + ⇤MXM , with XM = ⇥M
↵t↵ generatorsEn(n)

• In gauged supergravities,         is the embedding tensor. It selects a 
subgroup of the U-duality group which is realised locally.

⇥M
↵

It must satisfy two constraints:
• Quadratic constraint:              

(closure of the gauge algebra):
• Linear constraint:

Restricts          to a specific representation:⇥M
↵

Necessary for the tensor hierarchy

• We find that the deformation parameter must satisfy these two constraints. 

Example: on a covariant vector U: �⇤U
N = eL⇤U

N = L⇤U
N �XMP

N ⇤M UP

D U-duality R⇥

7 SL(5) 15+ 400

4 E7(7) 912

⇥
XM , XN

⇤
= XMN

PXP

de Wit, Samtleben, 
Trigiante, Nicolai, etc…



Deformed EFT: ‘XFT’
Can we construct a deformed EFT from the deformed generalised Lie 
derivative? What are the (new) constraints on the extended coordinates? 

As in EFT, consistency of the theory demands: 

• Triviality of the Jacobiator:

• Closure of the generalised diffeomorphisms according to an ‘X-bracket’: 

with

with                 eL{•,•}X
= 0

                 
⇥eL⇤, eL⌃

⇤
= eL[⇤,⌃]X

�
⇤,⌃

 M

X
⌘ 1

2

�eL⇤⌃
M + eL⌃⇤

M
�
=
�
⇤,⌃

 M

E
�⇤N⌃PX(NP )

M

⇥
⇤,⌃

⇤M
X

⌘ 1

2

�eL⇤⌃
M � eL⌃⇤

M
�
=

⇥
⇤,⌃

⇤M
E
�⇤N⌃PX[NP ]

M

{‘XFT’
constraints ⇥

XM , XN

⇤
= XMN

PXP Quadratic constraint of gauged SUGRA

Y MN
PQ @M ⌦ @N = 0 Section constraint of EFT

XMN
P @P = 0 New constraint: ‘X-constraint’

This requires the following constraints on all the fields and the parameter       :XM

What are the solutions to these constraints? SL(5) example



SL(5) ‘XFT’ and the embedding of massive IIA
Still defined on a 7+10 dimensional space                   with (xµ

, Y

[AB]) A,B = 1, . . . , 5.

We choose the deformation parameter to be the embedding tensor of the 
D=7 gauged SUGRA obtained upon truncation of massive IIA on a 3-torus.

Linear constraint        The deformation parameter is the 15+40’ of SL(5):

XMN
P ⌘ XAB CD

EF = 2XAB [C
[E�F ]

D] = 2
�
�[E[AKB][C � 2 "ABGH[CZ

GH,[E
�
�F ]
D]

Quadratic constraint trivially satisfied. 

X-constraint:
mR @↵5 = mR @45 = 0 ✏↵�� @↵4 @�� = 0

Section constraint:

‘M-theory’

Only
SL(3)

covariant!

The deformation parameter reads: X↵� �
5 = �2mR ✏↵��

Branching SL(5) to SL(4) then to SL(3): A �! (a , 4) �! (↵ , 5 , 4)



Gauged SUGRA
with         being the 
embedding tensor.

SL(5) XFT

x

µ

Y AB

@AB = 0

D=7: XM

D=10+7:‘M-theory’: @a4 6= 0



Gauged SUGRA
with         being the 
embedding tensor.

SL(5) XFT

x

µ

Y AB

@AB = 0

D=7:

D=10: IIA IIA IIB IIB

XM

D=10+7:

1. 4.3.2.�! �! �!
T-duality  

 along      Y ↵4
T-duality  

 along      Y �4
T-duality  

 along      Y �4

Four SL(3)-orbits of solutions:

3. Massless IIA:    (↵ 6= � 6= �)

is a        background flux.XM F(2)

@�4 , @↵� , @�� 6= 0

2. IIB:

is a        background flux.XM F(1)

@�4 , @�4 , @�� 6= 0

(� 6= �)

‘M-theory’: @a4 6= 0

4. IIB:    

is a        background flux.XM F(3)

(‘Natural’ IIB frame)@↵� 6= 0

1. Massive IIA:    

is the Romans mass.XM

(‘Natural’ IIA frame)@↵4 6= 0



After choosing 1., the theory reduces to 
massive IIA in a 7+3 Kaluza-Klein split.

1. 4.3.2.�! �! �!
T-duality  

 along      Y ↵4
T-duality  

 along      Y �4
T-duality  

 along      Y �4

Gauged SUGRA
with         being the 
embedding tensor.

SL(5) XFT

x

µ

Y AB

@AB = 0

D=7:

D=10: IIA IIA IIB IIB

XM

D=10+7:

1.
Four SL(3)-orbits of solutions:

3. Massless IIA:    (↵ 6= � 6= �)

is a        background flux.XM F(2)

@�4 , @↵� , @�� 6= 0

2. IIB:

is a        background flux.XM F(1)

@�4 , @�4 , @�� 6= 0

(� 6= �)

‘M-theory’: @a4 6= 0

4. IIB:    

is a        background flux.XM F(3)

(‘Natural’ IIB frame)@↵� 6= 0

1. Massive IIA:    

is the Romans mass.XM

(‘Natural’ IIA frame)@↵4 6= 0



reproduce precisely the internal diffeomorphisms and internal gauge 
transformations of the 10 vectors of massive IIA in a 7+3 Kaluza-Klein split:

�Bµ
↵ = (@µ �Bµ

� @�) ⇠↵ + ⇠� @�Bµ
↵

�Cµ = ⇠� @�Cµ + (@µ �Bµ
� @�)��mR Bµ

� ⌅�

�Cµ� = ⇠� @�Cµ� + Cµ� @�⇠� + (@µ �Bµ
� @�)⌅� +Bµ

� @� ⌅�

�Cµ�� = ⇠� @�Cµ�� + 2Cµ�[� @�]⇠
� + (@µ �Bµ

� @�) ✓�� + 2Bµ
� @[�| ✓�|�]

+2Cµ @[�⌅�] � 2Cµ[� @�]��2mR Cµ[� ⌅�]

What about the dynamics of ‘XFT’?

The ‘XFT’ extension of EFT also allows for the embedding 
of massive type IIA supergravity.

In the (natural) IIA frame               , the generalised diffeomorphisms:

�⇤Aµ
AB =

�
@µ + eL⇤

�
Aµ

AB =
�
@µ + L⇤

�
Aµ

AB�⇤CDAµ
EFXCD EF

AB

@↵4 6= 0



In EFT, the dynamics of the different fields can be encoded in an 
action         First requires to construct the tensor hierarchy.

Dynamics of ‘XFT’

The action is uniquely determined by requiring gauge invariance under 
external and internal generalised diffeomorphisms. 

Following the EFT procedure, we construct the tensor hierarchy 
and the action for ‘XFT’. We focus on the differences with EFT.

We leave the SL(5) ‘XFT’ behind and choose to construct the action for  
the          ‘XFT’:     E7(7)

U-duality in D=4 maximal SUGRA 

• One of the most subtle case: it should work for

• Convenient: the tensor hierarchy is short. Only a few p-forms are 
needed.

n < 7 .

Hohm, Samtleben, 2013EFT by:E7(7)



       ‘XFT’: generalities E7(7)

M = 1, . . . , 56• The vector fields          are in the fundamental of         ,                         .Aµ
M E7(7)

Theory defined on a (4+56)-dimensional space (xµ
, Y

M )

XMN
P@P = 0X-constraint:        

• Linear constraint          The deformation parameter is in the 912 of         :E7(7)

• The constraints on the coordinates are:

Section constraint:        
generators        E7(7)

↵ = 1, . . . , 133

⌦MN@M@N = 0

(t↵)MN@M@N = 0

Invariant symplectic 
form of        E7(7)

No trombone 
gauging XMN

M , X(MNP ) = XMN
Q⌦PQ = 0



The symmetric X-bracket             splits into two trivial parameters of the form:{•, •}X

⇤M = (t↵)MN@N�↵ + 1
6 Z

M,↵ �↵ ⇤M = ⌦MN�N
Covariantly 
constrained

where                                        is the  
intertwining tensor in D=4 gauged  
SUGRA.

ZM,↵ = �XPQ
M (t↵)PQ

New in ‘XFT’

ZM,↵ �M = 0P1+133(�M ⌦ @N ) = 0

P1+133(�M ⌦ �N ) = 0

       ‘XFT’: generalities E7(7)

M = 1, . . . , 56• The vector fields          are in the fundamental of         ,                         .Aµ
M E7(7)

Theory defined on a (4+56)-dimensional space (xµ
, Y

M )

XMN
P@P = 0X-constraint:        

• Linear constraint          The deformation parameter is in the 912 of         :E7(7)

Section constraint:        
generators        E7(7)

↵ = 1, . . . , 133

• The constraints on the coordinates are:

Invariant symplectic 
form of        E7(7)

No trombone 
gauging XMN

M , X(MNP ) = XMN
Q⌦PQ = 0

⌦MN@M@N = 0

(t↵)MN@M@N = 0



       ‘XFT’: tensor hierarchy E7(7)

As in EFT, a naive expression for the field strength           does not transform 
covariantly: 

Fµ⌫
M

Fµ⌫
M = 2 @[µA⌫]

M �
⇥
Aµ, A⌫

⇤M
X

�⇤Fµ⌫
M 6= eL⇤Fµ⌫

M

Under vector (i.e. generalised diffeomorphisms) and tensor gauge 
transformations:

�⇤Fµ⌫
M = eL⇤Fµ⌫

M �⌅Fµ⌫
M = 0and

�⌅Aµ
M = 12(t↵)MN@N⌅µ↵ + 2ZM,↵ ⌅µ↵ + 1

2 ⌦
MN⌅µNIn particular:

Fµ⌫
M = Fµ⌫

M � 12 (t↵)MN@NBµ⌫ ↵ � 2ZM,↵Bµ⌫ ↵ � 1
2 ⌦

MNBµ⌫ N

Trivial gauge parameters
⇥
Dµ,D⌫

⇤
= �eLFµ⌫ = �eLFµ⌫

The non-covariant terms are cancelled against the gauge variations of a 
set of two-forms Bµ⌫ ↵ , Bµ⌫ M Beginning of a tensor hierarchy.

Two-forms also carry their own gauge transformations with parameters ⌅µ .



       ‘XFT’: tensor hierarchy E7(7)

As in EFT, a naive expression for the field strength           does not transform 
covariantly: 

Fµ⌫
M

Fµ⌫
M = 2 @[µA⌫]

M �
⇥
Aµ, A⌫

⇤M
X

�⇤Fµ⌫
M 6= eL⇤Fµ⌫

M

The non-covariant terms are cancelled against the gauge variations of a 
set of two-forms Bµ⌫ ↵ , Bµ⌫ M Beginning of a tensor hierarchy.

Under vector (i.e. generalised diffeomorphisms) and tensor gauge 
transformations:

�⇤Fµ⌫
M = eL⇤Fµ⌫

M �⌅Fµ⌫
M = 0and

These results are consistent with the          EFT (when              ) and with 
D=4 gauged supergravities (when             ).

E7(7) XM = 0
@M = 0

�⌅Aµ
M = 12(t↵)MN@N⌅µ↵ + 2ZM,↵ ⌅µ↵ + 1

2 ⌦
MN⌅µNIn particular:

Fµ⌫
M = Fµ⌫

M � 12 (t↵)MN@NBµ⌫ ↵ � 2ZM,↵Bµ⌫ ↵ � 1
2 ⌦

MNBµ⌫ N

Trivial gauge parameters
⇥
Dµ,D⌫

⇤
= �eLFµ⌫ = �eLFµ⌫

Two-forms also carry their own gauge transformations with parameters ⌅µ .



       ‘XFT’: the bosonic actionE7(7)

The field equations of ‘XFT’ can be encoded into a gauge  
invariant action supplemented by a twisted self-duality equation:

Fµ⌫
M = � 1

2 e "µ⌫⇢� ⌦
MN MNKF⇢�

K

SXFT =

Z
d

4

x d

56

Y e

⇥
R̂ +

1

48
g

µ⌫ DµMMN D⌫MMN

� 1

8
MMN Fµ⌫MFµ⌫

N + e

�1 L
top

� VXFT(M, g,X)
⇤

Same field content as for the          EFT:  
�
eµ

↵,MMN , Aµ
M , Bµ⌫ ↵, Bµ⌫ M

 
E7(7)

parametrising
E7(7)/SU(8)

Dµ Fµ⌫ Except for the potential

• Each term is invariant under generalised diffeomorphisms 
• Relative coefficients are fixed by external diffeomorphisms 

           Uniquely
determines            SXFT

  Decouples
when @M = 0

The action takes the same form as in EFT, but with modified expressions  
for       and         required by gauge covariance.



The scalar potential of ‘XFT’ splits into three parts:
V

XFT

(M, g,X) = V
EFT

(M, g) + V
SUGRA

(M, X) + V
cross

(M, X)

VEFT = � 1
48 M

MN @MMKL @NMKL + 1
2 M

MN @MMKL @LMNK

� 1
2 g

�1@Mg @NMMN � 1
4 M

MN g�1@Mg g�1@Ng

� 1
4 M

MN @Mgµ⌫ @Ngµ⌫

       ‘XFT’: the potentialE7(7)

with

VSUGRA = 1
168

⇥
XMN

PXQR
SMMQMNRMPS + 7XMN

PXQP
NMMQ

⇤ Vanishes when 

Vanishes when 

@M = 0

XM = 0

Vanishes when 
@M = 0 and/or XM = 0

V
cross

= 1
12 M

MNMKLXMK
R @NMRL

Exclusive
to XFT

The action reduces to the one of EFT (when             ) and to the one of  
D=4 gauged SUGRA (when             ).

XM = 0
@M = 0

Finally, the action reduces to the one of massive IIA in a 4+6 KK split upon 
choosing the correct deformation and set of physical coordinates.



Conclusion and outlook

• We extend the EFT framework by introducing a consistent 
deformation of the generalised Lie derivative.

• Consistency of the generalised diffeomorphisms algebra imposes an 
additional constraint on the coordinate dependence of the fields.  

(Some) future directions:

• For a specific choice of deformation, the ‘XFT’ constraints admit 
10D solution corresponding to massive IIA supergravity. 

• The         ‘XFT’ action takes a similar form as in EFT except for the 
scalar potential which contains a non-trivial extension.       

E7(7)

• Study truncations of massive IIA supergravity via generalised 
Scherk-Schwarz.

Guarino, Jafferis, Varela, 2015

• Implementation of D8 branes in an exceptional framework.



Thank you for your attention.



Backup



SL(5) XFT: generic deformations

For a specific frame (i.e.choice of coordinates), what are all the 
deformations compatible with the XFT constraints?

Reminder:
15 40’

XMN
P ⌘ XAB CD

EF ! K(AB) � Z [AB],C

K44 ⌘ fFR 4-form flux

• (natural) IIA frame:                                                                                  
Allowed deformations correspond to background fluxes + Romans mass:

Cannot be all turned on 
 simultaneously: restrictions 

from the quadratic constraint.
mR H↵ = 0

H[↵ F��] +
1
72 mR H↵�� = 0

Tadpole cancellation  
for O8/D8 and O6/D6 

Dilaton flux1
4 K↵4 = 1

2 ✏↵�� Z
��,5 ⌘ H↵

NS-NS 3-form fluxK44 ⌘ 1
3! ✏

↵�� H↵��

R-R 2-form fluxZ5↵,5 ⌘ 1
2 ✏

↵��F��

Z45,5 ⌘ 1
2 mR

• ‘M-theory’ frame:                                                                                       
The only allowed deformation is identified with a Freund-Rubin parameter: 

@a4 6= 0

@↵4 6= 0



• (natural) IIB frame:                                                                                       
Allowed deformations also correspond to background fluxes + ?: 

The identification of one of the allowed deformation remains mysterious:
(non-geometric) one-form background flux: Under investigation.

Z↵5,4 = Z↵4,5 ⌘ H↵

Z5↵,5 ⌘ F↵

Z45,4 ⌘ 1
3! ✏↵�� H

↵��

Z45,5 ⌘ 1
3! ✏↵�� F

↵��

Dilaton flux

NS-NS 3-form flux

R-R 3-form flux

Axion flux

✏↵�� F
� H� = 0

Restrictions from  
the quadratic constraint.

Z↵4,4 ⌘ ?

"↵��F
� ? = 0

"↵��H
� ? = 0

SL(2)
triplet of 

deformations

SL(2)
doublet 

of 
deformations

@↵� 6= 0

Aldazabal, Andres, Camara, Grana 2013



The topological term: can be written as manifestly gauge invariant  
surface term in a five-dimensional external space. 

@M = 0Contrarily to EFT, it does not vanish when             . This was  
expected from the D=4 gauged supergravity action.

S

top

(X) = � 1
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