Deformations of
exceptional field theory
and the Romans mass.



Maximal supergravities in various dimensions possess intriguing
U-duality symmetries (E7(7y, Eg6), --.).

Many of these theories can 1b:

be obtained by dimensional @ \Q
reduction of 11D supergravity

or 10D |IB supergravity, e.g.

4D: N= 8ungauged—> -8
( Fi7(7ysymmetry) SO(8) gauged

An old question is how the higher-dimensional o
supergrawtles reflect the excepnonal symmetrles WhICh

First approach: gauge equivalent rearrangement of degrees of freedom.

For example, 11D supergravity was rewritten from a 4D perspective while

retaining all the degrees of freedom. No truncation! de Wit. Nicolai, 1980'

—P These reformulations exhibit features of the U-dualities.



New advances: rely on extended geometrical structures and/or spurious
degrees of freedom.

* Exceptional generalized geometry: extension of the tangent space to
include the various p-forms associated with abelian gauge symmetries.

—» Unifies diffeomorphisms and p-forms gauge transformations
In an enlarged symmetry group.

Koepsell, Nicolai, Samtleben, 2000

Coimbra, Strickland-Constable, Waldram, 2011
Godazgar, Godazgar, Nicolai, 2013

etc...

* Exceptional field theory (EFT): extension of space-time in order for

the coordinates to transform covariantly under the exceptional duality

symmetry. Hillman 2009

—» Fully E,,,)-covariant theory.

—p A section constraint reduces the number of physical coordinates
to (at most) 11.

Berman, Godazgar, Perry 2011
Hohm, Samtleben, 2013
Samtleben, Musaev, 2014
efc...



The E,»)EFT shares (most) of the field content and multiplet structure of
gauged maximal supergravities in D=(11-n):

1
M

1,...,(11 —n)
1,..

{euo‘, Muyn, AM, (2 < p)—forms} dim (Roye)

Scalar matrix

All fields depend on an extended set of coordinates:  (z*, Y™ )— dualto O

The EFT is uniquely determined by its gauge symmetries:

* Internal generalised diffeomorphisms Eo(n) EFT
generated by AY (z,Y)

e External diffeomorphisms
generated by ¥ (z,Y) yM

D=11-n: Ungauged maximal L
SUGRA L
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., dim (Rvec)
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_Consls,tenoy of the internal 10D: (massless) IIA 1B
diffeomorphisms algebra requires Oy = 0
a covariant section constraint. v

. . . D=11-n: Ungauged maximal L

—» Recover physical theories in a SUGRA X

Kaluza-Klein split.



The E,»)EFT shares (most) of the field content and multiplet structure of
maximal gauged supergravities in D=(11-n):

M

... (11—n
{euo‘, My, AMM, (2 < p)—forms} 5 | ( )

., dim (RVGC)

Scalar matrix

All fields depend on an extended set of coordinates:  (z*,Y™)— dualto O,

The EFT is uniquely determined by its gauge symmetries:

* Internal generalised diffeomorphisms E,.(n) EFT
AM(z,Y

generated. by (@ | ) Section Constraint
e External diffeomorphisms v

generated by f“(ij) 11D: ‘M theory’ Y
_Consis,tenoy of the internal 10D: (massless) IIA 1B
diffeomorphisms algebra requires Oy = 0
a covariant section constraint. v

. . . D=11-n: Ungauged maximal L

—» Recover physical theories in a SUGRA X

Kaluza-Klein split.

Generalised diffeomorphisms then account for both the internal p-form
gauge transformations and the ordinary internal diffeomorphisms.



Recently, the manifest duality covariance of EFT's was used to:

e compute gravitons scattering (on an extended torus):

—» Directly obtain U-duality invariant expressions for the coetticients

of higher-derivative terms in the M-theory effective action.
Bossard, Kleinschmidt, 2015

* Prove the consistency of classes of truncations of eleven-
dimensional and Type |l supergravities:

Generalised Muyn(z,Y) = Uyt (YV)UNC(Y) Mpg(2)

Scherk-Schwarz Hohm, Samtleben, 2014

Twist matrix € E,, ;) Malek, Samtleben, 2015
Baguet, Pope, Samtleben, 2015

EFT’s provide an embedding of the eleven-dimensional and massless
Type |l supergravities in a manifestly U-duality covariant framework.

What about massive Type IIA supergravity?
—» Massless ||A and |IB are the only solutions of the section constraint.
—» Usually requires some (modest) form of non-geometry:. Hohm, Kwak, 2011

(How) can it be embed fully geometrically in EFT?



Generalities of E,,,,) EFT (2 < n <8)

Generalised diffeomorphisms act on covariant tensors (of weight A) as a

generalised Lie derivative: R
‘5AUM — ILAUMl

LaUM = ANoyUM —UNoNAM + YMN b OnATY U9 + (X —w) 0pATUM

E.(n) invariant

* Two requirements for consistency of the theory:

e Closure of the generalised diffeomorphisms according to an E-bracket:

_ . M1 M M
La, L] = Lia s, | with [A, %]}, = 5 (LaZM — LyA™) | e
N _ M section constraint:
* Jacobi identity: {o, o}E must be trivial parameters. YMN 5600 @ Oy =0

Lieer, =0/ with {A,Z}]g = %(LAZM + LeAM) —

» The vectors A, covariantize the external derivatives: D,, = 9,, — La,

— They transform as: 5AAMM — DMAM gau‘;'it,;’aﬂﬂers




Example (n=4): SL(5) EFT Musaev 2015
A B=1,...,5.

» The theory contains vector fields A4, = 4,45} in the 10 of SL(5).
+ |t is defined on (7+10)-dimensional space coordinatized by (z*,Y*5)

e The section constraint takes the form: | eAB“PE 9,5 @ Oop = 0

Upon the following branching: 5 SL& 4+ 1 m 3+1-+1

A— (a,4) — (v, 5, 4)
The 10 vectors decompose as A4, = (A4,*°, A,%* A, %P A,*)

The two SL(5)-orbits of solutions to the section constraint are:
1. ‘M-theory’: 041 #0, 0, =0 = lA: Ons # 0, 045 = Oa5 = Oup =0
2. lIB: aaﬁ 7é 0, 045 = Oas = Oqs =

Choosing the IIA solution, 6o A, " = (9, + LLa) A, reproduces the internal
gauge transformations and d|ffeomorph|sms_ of type lIA in a 7+3 KK split.




7+3 split of massless IIA

Massless type IIA supergravity contains the p-forms: A, Amnp, Amn
R-R NS-NS

Under their associated gauge transtormations they transform as:
0Apm = OmA , 0Apn =201 Zn) 5 0Amnp = 30 Onp) — 3 Apn Op A

We perform a 7+3 Kaluza-Klein split: =™ = (=", y)

10D 7D 3D internal
spacetime spacetime space

One obtains 10 7D vectors. After standard KK redefinitions, they transform
under internal diffeomorphisms and internal gauge transtormations as:

diffeo. parameter

§B,C = (0,— B,°0s5)EY+ £°05;B,~

p (6” " 05) 5 oo All fields still
5CH = f 85CM + (a,u — B,u 85) A ) de,()end on
5Chs = € 05Cu5+ Cus €0 + (9, — BL® 95) s + BuS 95 Es . 10 coordinates!
0Cupy = & 05Cupy +2Chsly 05)€° + (O — Bu® 05) 05y + 2 B,.° Ojg) 05

+2C, a[BE’Y] —2 Cu[ﬁ a’Y])\ '



7+3 split of massive lIA

e The theory now contains a deformation (mass) parameter: mpg

 The gauge transtormations of the p-forms are deformed:
0A,,, = O A+ Mmpr=,, , 0A ., = 28[m En] : 5Amnp = 38[m an] — SA[mn 8p])\

— MR AlnSy)

e After the 7+3 Kaluza-Klein split and the same KK redefinitions, the
internal gauge transformations of the 10 7D vectors become:

6B, = (0, — B,°0s5)&~ + 55 05 B,,°

6C, = £°05C,+ (0, — B,° ds) \—mpg B,° =5

6Cus = &£°05C,5+ Cus 8555 + (0, — B,° 85) =5+ B,° 05 s

0Cupy = £ 05Cupy +2Cpsiy 85155 + (O — 5 0s) Oy + 2 BM(S I V511

+2CL 015, — 20,3 0y)A—2mp C u[B Z4]

The new terms cannot be recovered from EFT since: 6o A, 4P = (0, +Lp)A, A5

—> Suggests a deformation of the generalised Lie derivativel




Deformed generalised Lie derivative

* We define a modified Lie derivative by introducing a deformation
parameter Xy which takes values in the Lie algebra of the U-duality

group:

E..(n) generators

Example: on a covariant vector U: §pUYN = LoUN = LAUN — X pN AMUP

* |n gauged supergravities, 0,,% is the embedding tensor. It selects a
subgroup of the U-duality group which is realised locally.

de' Wit, Samtlebqn,
It must satisty two constraints: Trigiante, Nicolai, efc...

e Quadratic constraint:
(closure of the gauge algebra). [XM, XN] — XMNPXP

e [ inear constraint: D | U-duality | Re
Restricts O, to a specific representation: 7 SL(5) 15 + 40’
—P Necessary for the tensor hierarchy 4 E7 (7 912

* We find that the deformation parameter must satisty these two constraints.



Deformed EFT: ‘XFT’

Can we construct a deformed EFT from the deformed generalised Lie
derivative”? What are the (new) constraints on the extended coordinates”

As in EFT, consistency of the theory demands:

e Closure of the generalised diffeomorphisms according to an ‘X-bracket’:

[EA,EE} = E[A,E]X with [A,E]i\? = %(EAZM — LyAM) = [A,Z]Jg—ANEPX[Np]M

e Triviality of the Jacobiator:

Liser, =0/ with {A T} = Z(LaZM + LeA™M) = {A, 2} —AVEL Xy p) M

DN | —

This requires the following constraints on all the fields and the parameter X :

YMNPQ 8M &) 8N =0 Section constraint of EFT
‘XFT’
constraints

X s NP Op =0 I New constraint: ‘X-constraint’

X, Xn] = Xun' Xp |

What are the solutions to these constraints? —» SL(5) example



SL(5) ‘XFT’ and the embedding of massive IIA

Still defined on a 7+10 dimensional space (z*, Y[AB]) with A, B=1,...,5.

Linear constraint —» The deformation parameter is the 15+40° of SL(5):

Xun" =Xapep™" =2X4p [C[E(Sﬂ — 2(5[[5[(3][0 - 25ABGH[CZGH’[E)51F)%

We choose the deformation parameter to be the embedding tensor of the
D=7 gauged SUGRA obtained upon truncation of massive ||A on a 3-torus.

— Quadratic constraint trivially satisfied.

Branching SL(5) to SL(4) then to  A— (a,4) — (o, 5, 4)

The deformation parameter reads: Xagf = —2 MR €a8~

X-constraint: Section constraint: Only
 ——— SL(3)

Mmp Oas = Mp Oy = 0 e“PY 9,4 Ogy = 0 covariant!

‘M-theory’



M-heBLy<Ty1 0

D=10+7:

D=7:

SL(5) XFT

Oap =0

\/
Gauged SUGRA
with Xps being the
embedding tensor.

YAB



M-hSBLy< Ty 0

Four SL(3)-orbits of solutions:

1. Massive lIA:
8a4 7& 0  (‘Natural' lIA frame)
X is the Romans mass.

2. 1IB: (B# ")
8547 8747 857 # 0

X is a F(qybackground flux.

3. Massless llA: (o # 8 # )
Oya ;, Oay , O3y # 0

X is a Fyy background flux.

4. 11B:
8a5 # 0 (‘Natural’ IIB frame)

X is a Fsy background flux.

D=10+7:

D=10: [|A

D=7:

SL(5) XFT

A B 1B

Oap =

\4

Gauged SUGRA

0

with Xps being the
embedding tensor.

YAB

rH

1. — 2. — 3. — 4.

T-duality
along Y4

T-duality
along Y#4

T-duality
along Y



M-heBLy<Ty1 0

Four SL(3)-orbits of solutions:

1. Massive lIA:
8a4 7& 0  (‘Natural' lIA frame)
X is the Romans mass.

2. 1IB: (8#7)
8647 8747 857 # 0

X is a F(qybackground flux.

3. Massless llA: (o # 8 # )
Oya ;, Oay , O3y # 0

X is a Fyy background flux.

4. 11B:
@ag # 0 (‘Natural’ IIB frame)

X is a Fsy background flux.

D=10+7: SL(5) XFT
D=10: |IA A B 1B |yAB
Oap =0
\/
Gauged SUGRA
D=7: with X, being the rH
embedding tensor.

1. — 2. — 3. — 4.

T-duality T-duality T-duality
along Y**  along Y?* alongy™

After choosing 1., the theory reduces to
massive |lA in a 7+3 Kaluza-Klein split.



In the (natural) lIA frame 0,4 # 0 , the generalised diffeomorphisms:

~

oaAL Y = (0 + L) A" = (0, + La) AP AP A Xeop prt?

reproduce precisely the internal diffeomorphisms and internal gauge
transformations of the 10 vectors of massive |IA in a 7+3 Kaluza-Klein spilit:

6B, = (0, — B,°0s)&> +&° 05B,~

6C, = &05C,+ (0, — B,°0s)\—mprB,° =5

0Cup = & 95C,5+CLs058° + (0, — B,°05)Es + B,° 05 =

0Cupy = & 05Cupy +2 Cusly 85]§5 + (O — Bu® 05) 0y + 2 B,° i) U1

+2C, 0132y —2C 13 0y)A=2mp C5 By,

The ‘XFT’ extension of EFT also allows for the embedding
of massive type IIA supergravity.

What about the dynamics of ‘XFT°?



Dynamics of ‘XFT’

In EFT, the dynamics of the different fields can be encoded in an
action —» First requires to construct the tensor hierarchy.

The action is uniguely determined by requiring gauge invariance under
external and internal generalised diffeomorphisms.

We leave the SL(5) ‘XFT' behind and choose to construct the action for
the E77) ‘XFT:

E7(7) EFT by:  Hohm, Samtleben, 2013

e One of the most subtle case: it should work for n < 7.

e (Convenient: the tensor hierarchy is short. Only a few p-forms are
needed.




E7'XFT’: generalities

» The vector fields A, are in the fundamental of E7(7y, M =1,...,56 .
— Theory defined on a (4+56)-dimensional space (", Y™

* Linear constraint — The deformation parameter is in the 912 of E 7y

No trombone

M _ Q . Invariant symplectic
gauging XMN ) X(MNP) = XMN QPQ =0

form of E7(7)
e The constraints on the coordinates are:

Section constraint: QMY 9,,0r = 0 X-constraint: X,y 0p =0

E;(7ygenerators (pa\M N _
a=1,...,133 (t%)" " OmOn =0



E7'XFT’: generalities

» The vector fields A, are in the fundamental of E7(7y, M =1,...,56 .
— Theory defined on a (4+56)-dimensional space (", Y™

* Linear constraint — The deformation parameter is in the 912 of E 7y

No trombone M . Q _ Invariant symplectic
gauging XMN 9 X(MNP) - XMN QPQ - O form of E7(7)

e The constraints on the coordinates are:

Section constraint: QMY 9,,0x = 0 X-constraint: X,y 0p =0
E7(7)generators a\MN _
a7;1,...,133 (%)™ " OmOn =0

The symmetric X-bracket {e, e} x splits into two trivial parameters of the form:

AM _ (ta)MNaNXa % ZM,Oé Yo AM _ QMNXN Covaria.nﬂy
constrained

where ZM* = — Xpo™ (t*)FC is the Piyiss(xu @ON) =0 zMa,  _

intertwining tensor in D=4 gauged
SUGRA. ’ 97 P1y133(Xm ® xn) =0 New in ‘XFT’




E77'XFT’: tensor hierarchy

As in EFT, a naive expression for the field strength FWM does not transform

covariantly: M -
FM,/M — 2(‘)[MA,,]M — [A/MAV}X —_— 5AFILLI/M + IL,AFILWM

The non-covariant terms are cancelled against the gauge variations of a
set of two-forms B,.., B, m ——» Beginning of a tensor hierarchy.
FuM =F,M —120Y"YONBu o — 22" *Bo — s QY B, N
Trivial gauge parameters =) [DWDV} - _IEFW — _IE]_-W

Two-forms also carry their own gauge transformations with parameters =, .

In particular:  6=4," = 120tV ONE 0 +22ME 0 + 2 QYVE,LN

Under vector (i.e. generalised diffeomorphisms) and tensor gauge
transformations:




E77'XFT’: tensor hierarchy

As In EF

covariantly:

- a naive expression for the field strength F,,* does not transform

M ~
FM,/M — 2(‘)[MA,,]M — [A/MAV}X —_— 5AFILLI/M + IL,AFILWM

The non-covariant terms are cancelled against the gauge variations of a
set of two-forms B,.., B, m ——» Beginning of a tensor hierarchy.

M
F v

_ F,uVM 192 (ta)MNﬁNB,uya . QZM’QBMVQ o %QMNBMVN

Trivial gauge parameters =l [DWDV} — _IEFW — —IE]:W

Two-forms also carry their own gauge transformations with parameters =, .

In particular:  6=4," = 120tV ONE 0 22 E 0 + 2 QYVE,LN

Under vector (i.e. generalised diffeomorphisms) and tensor gauge

transformations:

These results are consistent with the E77y EFT (when X = 0) and with
D=4 gauged supergravities (when 9y, = 0).



E7z7'XFT’: the bosonic action

Same field content as for the E 7y EFT: {e  Mun, Au™ By o Buw )

parametrising
E7(7)/SU(8) aM =0

The field equations of ‘XFT' can be encoded into a gauge
iInvariant action supplemented by a twisted self-duality equation:

A 1
R+ g™ D, MM Dy Myrn

1
_ gMMN f”VMFMVN -+ 6_1 £top — VXFT(M797X)]

e Each term is invariant under generalised diffeomorphisms Uniquely

 Relative coefficients are fixed by external diffeomorphisms | determines Sxr

The action takes the same form as in EFT, but with modified expressions
for D, and F,. required by gauge covariance. Except for the potential



E7z'XFT’: the potential

'he scalar potential of ‘XFT’ splits into three parts:
VXFT(M7 g) X) — VEFT(M7 g) —I_ ‘/SUGRA(My X) _I_ ‘/::ross('/\/l7 X)

with
Verpr = — 4_18 MMV 9y MBEL Oy Mger, + % MMV 9y MBEL O My i

Vanishes when
— 29 "Omg ONMMN — T MMYN g7 009 g O g

On =0

Vanishes when
Vevara = 1o | Xun' Xoro MMMV EMps + 7X v Xgp™ MM9 ]

Xp =0
Vanishes when - Exclusive
Oy = 0 and/or Xy =0 to XFT

The action reduces to the one of EFT (when X, = 0) and to the one of
D=4 gauged SUGRA (when 0y =0).

Finally, the action reduces to the one of massive IIA in a 4+6 KK split upon
choosing the correct deformation and set of physical coordinates.



Conclusion and outlook

 We extend the EFT framework by introducing a consistent
deformation of the generalised Lie derivative.

e Consistency of the generalised diffeomorphisms algebra imposes an
additional constraint on the coordinate dependence of the fields.

e For a specific choice of deformation, the ‘XFT' constraints admit
10D solution corresponding to massive [IA supergravity.

* The E7(7)'XFT" action takes a similar form as in EFT except for the
scalar potential which contains a non-trivial extension.

(Some) future directions:

e Study truncations of massive |IA supergravity via generalised
Scherk-Schwarz.

Guarino, Jafferis, Varela, 2015

e Implementation of D8 branes in an exceptional framework.



Thank you for your attention.



Backup



SL(5) XFT: generic deformations

For a specific frame (i.e.choice of coordinates), what are all the
deformations compatible with the XFT constraints”

Reminder: Xyn® = Xas cp”™

15
* ‘M-theory’ frame: 9,4 # 0

F N K(AB) D Z[AB],C

The only allowed deformation is identified with a Freund-Rubin parameter:

K44 = frr

* (natural) lIA frame: O,4 # 0

Allowed deformations correspond to background fluxes + Fomans mass:

5 _ |
i Kog = : 5 €CaBy ZP7P = Ha Dilaton flux
K44 — y €a67 H

R-R 2-form flux

Cannot be all turned on
simultaneously: restrictions
from the quadratic constraint.

mRHa =0
Hio Fgy +%mRHa57 =0

—p [adpole cancellation
for O8/D8 and O6/D6



* (natural) IIB frame: 9,5 # 0
Allowed deformations also correspond to background fluxes + 7:

744 = L 5, HT SL(2)
= 37 €apy .
; doublet Restrictions from
7455 = L €03 FoBY R-R 3-form flux of the quadratic constraint.
3! v deformations
5,4 4,5 __ oY : L
250" = 77" =HT Dilaton flux €apy FP HY =0
Z°° =FY  Axion flux triplet of Eapy "L =10
deformations
Zo4t =2 cap HP 2 =0

The identification of one of the allowed deformation remains mysterious:

— (non-geometric) one-form background flux: Under investigation.

Aldazabal, Andres, Camara, Grana 2013



The topological term: can be written as manifestly gauge invariant
surface term in a five-dimensional external space.

Stop(X) = — 2 /E 5 d°x / d°Y et P F M DL For v

= / d°x / d°°Y Liop(X)
033°

— (Contrarily to EFT, it does not vanish when dy; = 0. This was
expected from the D=4 gauged supergravity action.



