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Classical gravity with higher derivatives

Consider the gravitational action

I =

∫
d4x
√
−g(γR − αCµνρσCµνρσ + βR2) .

The field equations following from this higher-derivative action are

Hµν = γ

(
Rµν −

1

2
gµνR

)
+

2

3
(α− 3β)∇µ∇νR − 2α2Rµν

+
1

3
(α + 6β) gµν2R − 4αRηλRµηνλ + 2

(
β +

2

3
α

)
RRµν

+
1

2
gµν

(
2αRηλRηλ −

(
β +

2

3
α

)
R2

)
=

1

2
Tµν
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Nonlinear field equations for spherical symmetry

Use Schwarzschild coordinates
ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdϕ2)

The first equation contains the third-order derivative B(3) = B ′′′
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The second equation contains the third-order derivative A(3) = A′′′:
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Separation of modes in the linearized theory

Solving the full nonlinear field equations is clearly a challenge. One
can make initial progress by restricting the metric to infinitesimal
fluctuations about flat space, defining hµν = κ−1(gµν − ηµν) and then
restricting attention to field equations linearized in hµν , or equivalently
by restricting attention to quadratic terms in hµν in the action.

The action then becomes

ILin =

∫
d4x{−1

4
hµν(2α�− γ)�P(2)

µνρσh
ρσ

+
1

2
hµν [6β�− γ]�P(0;s)

µνρσh
ρσ} ;

P(2)
µνρσ =

1

2
(θµρθνσ + θµσθνρ)− P(0;s)

µνρσ

P(0;s)
µνρσ =

1

3
θµνθρσ θµν = ηµν − ωµν ωµν = ∂µ∂ν/� ,

where the indices are lowered and raised with the background metric
ηµν .
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From this linearized action one deduces the dynamical content of
the linearized theory:

I positive-energy massless spin-two

I negative-energy massive spin-two with mass m2 = γ
1
2 (2α)−

1
2

I positive-energy massive spin-zero with mass m0 = γ
1
2 (6β)−

1
2

K.S.S. 1978
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Static and spherically symmetric solutions

Now consider spherically symmetric gravitational solutions in the
linearised limit of the higher-curvature theory. In the linearized
theory, one finds the following general solution to the source-free
field equations HL

µν = 0, in which C ,C 2,0,C 2,+,C 2,−,C 0,+,C 0,−

are integration constants:

A(r) =

1− C 20

r
− C 2+ em2r

2r
− C 2− e

−m2r

2r
+ C 0+ em0r

r
+ C 0− e

−m0r

r
+ 1

2C
2+m2e

m2r − 1
2C

2−m2e
−m2r − C 0+m0e

m0r + C 0−m0e
−m0r

B(r) =

C +
C 20

r
+ C 2+ em2r

r
+ C 2− e

−m2r

r
+ C 0+ em0r

r
+ C 0− e

−m0r

r

7 / 40



• As one might expect from the dynamics of the linearized
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

• When coupling to non-gravitational matter fields is made via
standard hµνTµν minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point-source positive-energy matter delta function
Tµν = δ0

µδ
0
νMδ3(~x), for example, one finds

A(r) = 1 + κ2M
8πγr −

κ2M(1+m2r)
12πγ

e−m2r

r − κ2M(1+m0r)
48πγ

e−m0r

r

B(r) = 1− κ2M
8πγr + κ2M

6πγ
e−m2r

r − κ2M
24πγ

e−m0r

r

with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and
spin-zero sectors.
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Note that in the Einstein-plus-quadratic-curvature theory, there is
no Birkhoff theorem. For example, in the linearized theory, coupling
to the stress tensor for an extended source like a perfect fluid with
pressure P constrained within a radius ` by an elastic membrane,

Tµν = diag[P, [P−1
2`δ(r−`)]r2, [P−1

2`δ(r−`)]r2 sin2 θ, 3M(4π`3)−1] ,

one finds for the external B(r) function

B(r) = 1− κ2M

8πγr
+
κ2e−m2r

γr

{
M

2π`3

[
` cosh(m2`)

m2
2

− sinh(m2`)

m3
2

]
−P

[
sinh(m2`)

m3
2

− ` cosh(m2`)

m2
2

+
`2 sinh(m2`)

3m2

]}
−κ

2e−m0r

2γr

{
M

4π`3

[
` cosh(m0`)

m2
0

− sinh(m0`)

m3
0

]
−P

[
sinh(m0`)

m3
0

− ` cosh(m0`)

m2
0

+
`2 sinh(m0`)

3m0

]}
which limits to the point-source result as `→ 0.
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Frobenius Asymptotic Analysis

Asymptotic analysis of the field equations near the origin leads to
study of the indicial equations for behavior as r → 0. K.S.S. 1978

Let

A(r) = asr
s + as+1r

s+1 + as+2r
s+2 + · · ·

B(r) = btr
t + bt+1r

t+1 + bt+2r
t+2 + · · ·

and analyze the conditions necessary for the lowest-order terms in
r of the field equations Hµν = 0 to be satisfied. This gives the
following results, for the general α, β theory:

(s, t) = (1,−1) with 5 free parameters

(s, t) = (0, 0) with 3 free parameters

(s, t) = (2, 2) with 6 free parameters

Lü, Perkins, Pope & K.S.S., 1508.00010
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Now suppose one puts an “egg-shell” δ-function source at some
small distance ε from the origin. Consider solving these sourced
equations, similarly to the linearized theory analysis. Inside the
shell, the solution can only be of the (0,0) nonsingular type, which
needs no source. Suppose that outside one has a solution that
would be of (2,2) type if one continued it all the way in to r = 0.

Count parameters: 3 inside + 6 outside = 9 initially. However,
there are 6 continuity and ‘jump’ conditions coming from the field
equations. So one really has 9-6=3 parameters still free. These 3
so-far unfixed parameters are just what is needed for 2 boundary
conditions at infinity, to eliminate the rising exponential solutions,
plus the ‘trivial’ parameter that is fixed by requiring g00 → −1 as
r →∞.

Conclusion: the exterior (2,2) solution works well with a source in
the full non-linear theory. Exterior (1,-1) and (0,0) solutions would,
however, be overdetermined. So coupling to a standard
positive-energy source works only in the (2,2) family.
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(2,2) solutions without horizons

For asymptotically flat solutions with nonzero spin-two Yukawa
coefficient C 2− 6= 0, one finds numerical solutions that can continue
on in to mesh with the (2,2) family obtained from Frobenius
asymptotic analysis around the origin. Such solutions have no horizon;
numerical solutions have been found in the m2 = m0 theory
B. Holdom, Phys.Rev. D66 (2002) 084010 and in the R + C 2 theory
Lü, Perkins, Pope & K.S.S., 1508.00010

Horizonless solution in R + C 2 theory, behaving as r2 in both A(r) and B(r)

as r → 0.
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I There is no horizon in this set of minimally-coupled,
Yukawa-corrected solutions. Solutions asymptotically
approach the Schwarzschild solution for large r , but differ
strikingly in what would have been the inner-horizon region.

I This is in accord with generic conclusions from the parameter
count for solutions. For a generic R − C 2 + R2 theory
solution, there will be both spin-two and spin-zero falling
Yukawa terms as one approaches spatial infinity. Together
with the trivial time-rescaling parameter and the mass M, this
makes four welcome parameters. One then needs two more
solution parameters to ensure cancellation of the unwelcome
rising spin-two and spin-zero exponential terms.

I Although there is a curvature singularity at the origin in the
(2, 2) class of solutions (e.g. for this class, one has
RµνρσR

µνρσ = 20a−2
2 r−8 + · · · ), this is a timelike singularity,

unlike the spacelike singularity of the Schwarzschild solution.
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Wormholes

Another solution type found numerically has the character of a
“wormhole”. Such solutions can have either sign of M ∼ −C 20

and either sign of the falling Yukawa coefficient C 2−. As an
example, one finds a solution with M < 0 in the R − C 2 theory

2.8 3.0 3.2 3.4 3.6 3.8 4.0
r

0.1

0.2

0.3

0.4

0.5

B(r)

f(r)

In this solution, f (r) = 1/A(r) reaches zero at a point where
B(r) = a2

0 > 0. Making a coordinate change r − r0 = 1
4ρ

2, one
then has

ds2 = −(a2
0 + 1

4B
′(r0)ρ2)dt2 +

dρ2

f ′(r0)
+ (r2

0 + 1
2 r0ρ

2)dΩ2

which is Z2 symmetric in ρ and can be interpreted as a
“wormhole”, with the r < r0 region excluded from spacetime.
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No-hair Theorems and Horizons
W. Nelson, Phys.Rev. D82 (2010) 104026; arXiv:1010.3986; H. Lü, A. Perkins, C.N. Pope & K.S.S., 1508.00010

• For β > 0 (i.e. for non-tachyonic m2
0 > 0), take the trace of the

Hµν = 0 field equation:
(
�− γ

6β

)
R = 0. Then multiply by λ

1
2R

and integrate with
∫√

h over a 3D spatial slice at a fixed time, on
which hab is the 3D metric and λ = −tatbgab is the norm2 of the
timelike Killing vector ta orthogonal to the slice. Integrating by
parts, one obtains∫

d3x
√
h[Da(λ

1
2RDaR)− λ

1
2 (DaR)(DaR)−m2

0λ
1
2R2] = 0

where Da is a 3D covariant derivative on the spatial slice.

From this, provided the boundary term arising from the total
derivative gives a zero contribution, and for m2

0 > 0, one learns
R = 0. The boundary at spatial infinity gives a vanishing
contribution provided R → 0 as r →∞.
• The inner boundary at a horizon null-surface will give a zero

contribution since λ = 0 there.
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Consequently, for asymptotically flat solutions with a horizon, one
concludes that one must have R = 0. This already excludes the
possibility of the scalar m0 Yukawa correction found in the limit as
r →∞. So, for solutions that do have such a scalar Yukawa
correction to the classic GR behavior, one directly concludes:
there can be no horizon.

What about the non-trace part of the field equation and the
spin-two m2 Yukawa corrections? Nelson’s paper would have
allowed one to make a similar conclusion for the rest of Rµν .
Unfortunately, detailed analysis of his paper shows that it has a
fundamental flaw: instead of a sum of squares of the same sign,
one gets squares of opposite signs. Lü, Perkins, Pope & K.S.S., 1508.00010
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If one assumes the existence of a horizon and assumes also
asymptotic flatness at infinity, one obtains R = 0 as above. The
field equations then become identical to those in the special β = 0
case, i.e. with just a (Weyl)2 term and no R2 term in the action.

Counting parameters in an expansion around the horizon, subject
to the R = 0 condition, one finds just 3 free parameters. This is
the same count as in the (1,-1) family of the expansion around the
origin when subjected to the R = 0 condition. So asymptotically
flat solutions with a horizon must belong uniquely to the (1-1)
family, which contains the Schwarzschild solution itself. The
Schwarzschild solution is characterized by two parameters: the
mass M of the black hole, plus the trivial g00 normalization at
infinity. So in the higher-derivative theory, there is just one
“non-Schwarzschild” (1,-1) parameter.
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Away from Schwarzschild in the (1,-1) family

Lü, Perkins, Pope & K.S.S., 1508.00010

Considering variation of this “non-Schwarzschild” parameter away
from the Schwarzschild value, it is clear that changing it has to do
something to the solution at infinity. For a solution assumed to
have a horizon, and holding R = 0, the only thing that can happen
initially is that the rising exponential is turned on, i.e. asymptotic
flatness is lost. So, for asymptotically flat solutions with a horizon
in the vicinity of the Schwarzschild solution, the only spherically
symmetric static solution is Schwarzschild itself.

This conclusion is formalized by considering infinitesimal variations
of a solution away from Schwarzschild and proving a no-hair
theorem for the linearized equation in the variation. This can
successfully be done for coefficients α that are not too large (i.e.
for spin-two masses m2 that are not too small). One concludes
that the Schwarzschild black hole is at least in general isolated as
an asymptotically flat solution with a horizon.

18 / 40



Non-Schwarzschild Black Holes

Lü, Perkins, Pope & K.S.S., PRL 114, 171601 (2015); arXiv 1502.01028

Now the question arises: what happens when one moves a finite
distance away from Schwarzschild in terms of the (1,-1)
non-Schwarzschild parameter? Does the loss of asymptotic flatness
persist, or does something else happen, with solutions arising that
cannot be treated by a linearized analysis in deviation from
Schwarzchild?

This can be answered numerically. In consequence of the trace
no-hair theorem, the assumption of a horizon together with
asymptotic flatness requires R = 0 for the solution, so the
calculations can effectively be done in the R − C 2 theory with
β = 0, in which the field equations, thankfully, can be reduced to a
system of two second-order equations.
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The study of non-Schwarzschild solutions is more easily carried out
with a metric parametrization

ds2 = −B(r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) ,

i.e. by letting A(r) = 1/f (r).

For B(r) vanishing linearly in r − r0 for some r0, analysis of the
field equations shows that one must then also have f (r) similarly
linearly vanishing at r0, and accordingly one has a horizon. One
can thus make near-horizon expansions

B(r) = c
[
(r − r0) + h2 (r − r0)2 + h3 (r − r0)3 + · · ·

]
f (r) = f1 (r − r0) + f2 (r − r0)2 + f3 (r − r0)3 + · · ·

and the parameters hi and fi for i ≥ 2 can then be solved-for in
terms of r0 and f1. For the Schwarzschild solution, one has
f1 = 1/r0, so it is convenient to parametrize the deviation from
Schwarzschild using a non-Schwarzschild parameter δ with

f1 =
1 + δ

r0
.
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The task then becomes that of finding values of δ 6= 0 for which
the generic rising exponential behavior as r →∞ is suppressed.
What one finds is that there do indeed exist asymptotically flat
non-Schwarzschild black holes provided the horizon radius r0
exceeds a certain minimum value rmin

0 . For α = 1
2 , one finds the

following phases of black holes:

0.8 1.0 1.2 1.4
r0

-1.0

-0.5

0.5

M

Black-hole masses as a function of horizon radius r0, with a branch point

at rmin
0 ' 0.876. The dashed line denotes Schwarzschild black holes and

the solid line denotes non-Schwarzschild black holes.
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The Lichnerowicz Operator

Now let us study in some more detail the point where the new
black hole family branches off from the classic Schwarzschild
solution family. We can study solutions in the vicinity of the
Schwarzschild family by looking at infinitesimal variations of the
higher-derivative equations of motion around a Ricci-flat
background. For the δRµν variation of the Ricci tensor away from
a background with Rµν = 0 one obtains

γ(δRµν − 1
2gµν δR) + 2(β − 1

3α)(gµν�−∇µ∇ν)δR

−2α� (δRµν − 1
2gµν δR)− 4αRµρνσ δR

ρσ = 0 .
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Restricting attention to asymptotically flat solutions with horizons,
however, we know from the trace no-hair theorem that R = 0 so
δR = 0 and the δRµν equation simplifies, upon recalling that
m2

2 = γ
2α , to (

∆L + m2
2

)
δRµν = 0 ,

where the Lichnerowicz operator is given by

∆L δRµν ≡ −�δRµν − 2Rµρνσ δR
ρσ .

Restricting attention to the m2
2 > 0 nontachyonic case, one sees

that black hole solutions deviating from Schwarzschild must have a
λ = −m2

2 negative Lichnerowicz eigenvalue for δRµν .
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The Gross-Perry-Yaffe eigenvalue

In a study of the instability of the Euclideanised Schwarzschild
solution in Einstein theory, Gross, Perry and Yaffe Phys.Rev. D25 (1982), 330

found that there is just one normalisable negative-eigenvalue mode
of the Lichnerowicz operator for deviations from the Schwarzschild
solution. For a Schwarzschild solution of mass M, it is

λ ' −0.19M−2

i.e. m2M ' 0.44

I Comparing with the numerical results for the new black hole
solutions of the higher-derivative gravity theory, this
corresponds nicely with the point where the new black hole
family branches off from the Schwarzschild family. This link to
static new solutions was actually noted already by Brian Whitt
in an early study of black hole stability in the higher-derivative
theory Phys.Rev. D32 (1985), 379 , but we shall see that his conclusions
about time-dependent solutions need correcting.
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Analogous negative Lichnerowicz eigenvalues exist in other
space-time dimensions D as well, provided that one considers only
theories that admit Ricci-flat solutions (i.e. theories without a
RµνρσR

µνρσ term, since for D 6= 4 this is not related by the
Gauss-Bonnet invariant to (Ricci)2 and R2 terms). Thus one
considers a dimension D theory with Lagrangian

L =
√
−g (R + ξ RµνRµν + β̃ R2) .

(relation to earlier D = 4 notation: γ = 1, ξ = −2α, β̃ = β + 2
3α).
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Noting that Lichnerowicz eigenvalues scale like 1/r2
0 and that

M = 1 for Gross, Perry and Yaffe corresponds to r0 = 2, one has
for Schwarzschild solutions of unit radius r0 = 1 in dimensions D
the eigenvalues Lü,Perkins,Pope & K.S.S. in preparation

D = 4 : λ1 ≈ −0.7677

D = 5 : λ1 ≈ −1.610

D = 6 : λ1 ≈ −2.499

D = 7 : λ1 ≈ −3.417

D = 8 : λ1 ≈ −4.356

D = 9 : λ1 ≈ −5.309

D = 10 : λ1 ≈ −6.272

D = 11 : λ1 ≈ −7.242 ,

which one sees includes the D = 4 result for M = 1↔ r0 = 2, i.e.
λ = λ2 ≈ −0.7677/4 = −0.1919 . These results imply that, in
dimension D higher-derivative gravity theories that admit a
standard Schwarzschild black-hole solution, there should also be
branches of non-Schwarzschild black-hole solutions.
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Time Dependent Solutions and Stability

Now consider time-dependent perturbations δRµν away from a
Schwarzschild solution in order to search for possible instabilities.
For this one needs to analyse the Lichnerowicz condition
(∆L + m2

2) δRµν = 0 for time-dependent solutions. For
asymptotically flat solutions with a horizon, we still have the R = 0
consequence of the trace no-hair theorem, so δR = 0. Then from
the Bianchi identity ∇µRµν = 1

2∇νR we obtain ∇µδRµν = 0, so
δRµν must be a “TT” quantity.

The “TT” condition for δRµν already indicates a similarity to the
situation that obtains in Pauli-Fierz theory, where the linearised
field equations for a massive spin-two field ψµν imply
∂µψµν = ψνν = 0.
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Zerilli-Schrödinger Form Lü, Perkins, Pope & K.S.S., in preparation

Start from an ansatz for spherically-symmetric time-dependent TT
modes

ψ00 = hψ0(r) eνt , ψ01 = χ(r) eνt

ψ11 = h−1 ψ1(r) eνt , ψij = r2 ψ̄(r) γij e
νt

The TT conditions imply three equations which can be solved for
ψ0, ψ̄ and χ′. The Lichnerowicz eigenvalue equation implies two
two-derivative equations for the (01) and (00) components.
Inserting the results for ψ0, ψ̄ and χ′ from the TT conditions, one
can solve for the undifferentiated χ and then obtain a second-order
equation purely for ψ1.

Following Zerilli’s treatment in Einstein theory PRL 24 (1970), 737 , one
next introduces a new variable φ(r) defined by

φ(r) = ν−1 u(r)χ(r) + v(r) ψ̄(r)

where u(r) and v(r) do not depend on the imaginary frequency ν.
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In order to obtain a Schrödinger form for the Lichnerowicz
eigenvalue equation, one requires that in terms of the “tortoise”
coordinate (ranging from −∞ at the horizon to +∞ at spatial
infinity)

r∗ =

∫ r dr ′

h(r ′)

the function φ should satisfy an equation of the form

d2φ

dr2
∗

= W (r)φ

in which W (r) should be of the form W (r) = ν2 + V (r) where
V (r) does not depend on the frequency ν.
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Picking a unit Schwarzschild radius r0 = 1 for h(r) = 1− 1
rD−3 in

spacetime dimension D, one obtains a Schrödinger-form equation

−d2φ

dr2
∗

+
[
ν2 + V (r)

]
φ = 0

in which the potential V (r) is given by

V (r) = − h(r)

rD−1 [ 1
2 (D − 2)(D − 3)− λ rD−1]2

Y (r)

where

Y (r) = − 1
16 (D − 2)3 (D − 3)2 [(D − 2) + (D − 4)rD−3]

+ 1
4 (D − 2)(D − 3)λ rD−1 [2D2 − 5D + 6− 3D(D − 2)rD−3]

+ 1
4 (D + 2)λ2 r2(D−1) [3(D − 2)− DrD−1] + λ3 r3(D−1)

λ = −m2
2
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Gregory-Laflamme Instability

Analysis of the possibility of growing (Re(ν) > 0) perturbations
can be done using WKB methods B.F. Schutz and C.M. Will, Ap.J. 291:L33 (1985) or
numerically. But in fact, the answer has been known for some time
from the 5D string R. Gregory and R. Laflamme, PRL 70 (1993) 2837 . Considering
perturbations about the 5D black string ds2

(5) = ds2
(4) + dz2

(
h

(4)
µν hµz
hzν hzz

)
(1)

where the z dependence is assumed to be of the form e ikz one

finds that h
(4)
µν satisfies an equation of the same Lichnerowicz form

equation (∆L + k2) h
(4)
µν = 0 as for δRµν Y.S. Myung, Phys.Rev. D88 (2013) .

This form is also found for perturbations about the Schwarzschild
solution in dRGT nonlinear massive gravity.
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The Gregory-Laflamme instability is an S-wave (` = 0) spherically
symmetric instability from the 4D perspective. In the
higher-derivative theory, it exists for low-mass Schwarzschild black
holes, which disappears for black hole masses M ≥ Mmax where

m2Mmax

M2
Pl

= .438 .

This is precisely the branch point for the beginning of the family of
new black holes.

Note that this monopole instability depends on the presence in the
theory of the m2 massive spin-two mode. In the R + R2 theory, on
the other hand, study of the quasinormal modes about the
Schwarzschild solution shows it to be stable as long as the
spin-zero mode mass is nontachyonic, m2

0 > 0. This is perhaps not
surprizing, since that theory is classically equivalent to ordinary
Einstein gravity plus a scalar field with a peculiar potential, for
which the ordinary GR stability considerations should apply.
Whitt, Starobinsky
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We therefore have the following classical stability picture:

0.8 1.0 1.2 1.4
r0

1.0

0.5

0.5

M

Unstable
Classically stable

Stability unknown

Classical stability regimes. The dashed line denotes Schwarzschild black

holes and the solid line denotes non-Schwarzschild black holes.

33 / 40



Outlook

• Taking the fourth order field equations seriously for gravity
including quadratic curvatures in the action leads to a rich
space of asymptotically flat solutions including horizonless
solutions, wormholes and both Schwarzschild and
non-Schwarzschild black hole solutions.

• The branch of non-Schwarzschild black holes bears an
intimate relation to black-hole stability: the branching point
mass on the Schwarzschild family is also the upper limit of
classical instability of the Schwarzschild solution.

Important issues remaining:

I Stability of the non-Schwarzschild black holes themselves.

I Extension of this analysis to axisymmetric solutions.
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Asymptotic Safety

A possible context for the occurrence of quadratic-curvature terms
in the gravitational effective action is expressed in the proposal
that gravity could be an asymptotically safe theory. Put forward
initially by Steven Weinberg, this has given rise to a certain
amount of discussion. M. Reuter 1996, M. Niedermaier 2009

The asymptotic-safety proposal extends the family of acceptable
quantum theories beyond the strictly renormalizable ones to
theories where there is a finite set of ‘relevant’ couplings lying on
an ultraviolet critical surface within the (infinite) space of coupling
constants. This includes ordinary renormalizable and
asymptotically free theories, where there is a Gaussian fixed point
at the origin of coupling-constant space, but can also include
theories with non-trivial fixed points away from the origin, which
would be of an essentially non-perturbative nature.
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Renormalization-group trajectories in coupling-constant space ending on a

non-Gaussian fixed point with finite gNewton and cosmological constant Λ.

Niedermaier 2009
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R + R2 theory

The massive spin-two ghost can be eliminated at the classical level
by setting α→ 0+, for which m2 →∞. Choosing β > 0 makes
the spin-zero mode non-tachyonic, and the resulting∫
d4x
√
−g(−R + βR2) theory is equivalent to GR coupled to a

non-ghost scalar field K.S.S. 1978 . This remains true at the full
nonlinear level B. Whitt 1984 , with an action (including also a
cosmological term)

IR+spin zero =

∫
d4x
√
−g(−R + βR2 − 2Λ)

↔
∫

d4x
√
−g(−R

−6β2(1 + 2βφ)−2(∇µφ∇µφ+
1

6β
φ2 +

1

3β2
Λ))
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• One can redefine the scalar field φ = (eφ̃/
√

3 − 1)/2β in order
to produce a scalar Lagrangian with a canonical kinetic term
and a transformed potential −1

2∇µφ̃∇
µφ̃− V (φ̃), where

V (φ̃) =
1

4β
(1− e−φ̃/

√
3)2 + 2Λe−2φ̃/

√
3

• It is thus clear that, for large φ̃, the potential V (φ̃) becomes
very flat. This was the reason for the attractiveness (at times)
of the

∫
d4x
√
−g(−R + βR2) theory for inflation purposes.

A.A. Starobinsky 1980; Mukhanov & Chibisov 1981

The coefficient β sets the scale for the potential. Restoring a
1/κ2 coefficient for the Einstein-Hilbert action

∫ √
−gR, the

mass of the scalar mode is m2
0 = (6κ2β)−1; applications for

inflation typically take this mass scale to be something like
10−6 of the Planck scale.
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