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Introduction

2d gauge theories with N = (2, 2) supersymmetry

Seiberg-like dualities ↔ Cluster Algebra structures

Cluster algebra: [Fomin, Zelevinsky 2001] to describe coordinate rings of groups
and Grassmannians

Other contexts: Teichmuller theory [Fock, Goncharov 03]

Integrable systems (Y-systems)

Wall crossing in 4d N = 2 theories

Amplitudes

Many interesting properties: Total positivity

Laurent phenomenon

Poisson structure

. . .
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Cluster algebra [Fomin, Zelevinsky 01]

Commutative ring with unit and no zero divisors
with distinguished set of generators called cluster variables.

Set of cluster variables = (non-disjoint) union of
distinguished collections of n-subsets called clusters.

• Exchange property (mutations):

for every cluster x and x ∈ x,
there is another cluster obtained by substituting x→ x′ with rule

xx′ = M1 +M2

M1,2: monomials in n− 1 variables x \ {x}, with no common divisors.

Any two clusters can be obtained from each other by sequence of mutations.
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Cluster algebra [Fomin, Zelevinsky 06]

• Seed x:

Skew-symmetric matrix bij → quiver B (no 1-, 2-cycles)
Coefficients yi ∈ P semifield (·,⊕) (tropical)
Cluster variables xi.

i j

bij
:

• Mutation (at node k):
k

k

b′ij =

{
−bij if i = k or j = k

bij + sign(bik) [bikbkj ]+ otherwise

y′j =

{
y−1
k if j = k

yj y
[bkj ]+
k (yk ⊕ 1)−bkj otherwise

x′j =


1

xk

(
yk

yk ⊕ 1

∏
i x

[bik]+
i +

1

yk ⊕ 1

∏
i x

[−bik]+
i

)
if j = k

xj otherwise .

Hierarchical structure.
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Cluster algebra

Total positivity

Cluster algebra transformations involve +, not −.

Canonical choice of “positive” submanifold of a cluster manifold.

Laurent phenomenon

Any cluster variable xi, viewed as a rational function of the variables in a
given cluster x′, is a Laurent polynomial.

It is conjectured that has positive coefficients.

Poisson structure

{xi, xj} = bijxixj extend by Liebniz (log canonical)

Such bracket is invariant under mutations.
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Outline

Seiberg-like dualities of 2d N = (2, 2) gauge theories

S2 partition function

From dualities to cluster algebras

(Speculative) applications



2d Seiberg-like dualities



2d Seiberg-like dualities [Jockers, Kumar, Lapan, Morrison, Romo 12; FB, Cremonesi 12]

2d N = (2, 2) SUSY gauge theories of vector and chiral multiplets

A: U(N) with Nf fundamentals, Na antifundamentals

l
B: U

(
max(Nf , Na)−N

)
with Na fundamentals, Nf antifundamentals,

NfNa gauge singlets, superpotential Wdual = q̃Mq

Na N Nf Na NfN'

Comments:

cfr. with 4d: no gauge anomaly → any Nf , Na
similar to Hori-Tong duality – but U(N) instead of SU(N)

Nf = Na: flow to IR CFT (otherwise gapped)

deformations: complexified FI term, twisted masses, superpotential terms

t = 2πξ + iθ , mj , m̃f ⇒ z ' e−t , z =
1

z′
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Geometric interpretation [Jia, Sharpe, Wu 14]

Large positive FI (assume Nf ≥ Na): geometric realization

Gr(N,Nf ) = Gr(Nf −N,NF )

• Theory A: each antifundamental gives a copy of tautological bundle S

Equality of bundles:

SNa → Gr(N,Nf ) = (Q∗)Na → Gr(Nf −N,Nf )

Universal quotient bundle: 0→ S → ONf → Q→ 0

• Theory B: mesons give (ONf )Na , superpotential imposes short exact sequence.



Chiral ring

Chiral operators modulo F-term relations

Theory A: Q̃fQj (no baryons)

Theory B: q̃jqf , Mfj , but W imposes q̃jqf = 0

Map: Q̃fQj = Mfj

No quantum corrections in the chiral ring

• Add superpotential W = f(Q̃fQj) = f(Mfj)



Twisted chiral ring

Generators: Trσk k = 1, . . . , N or symm. polynomials in σ = diag(σ1, . . . , σN )

Q(x) = det(x− σ) = xN − xN−1 Trσ + . . .

Relations: effective superpotential on the Coulomb branch t = 2πξ+ iθ

W̃eff = −t
∑
a

σa −
∑
j

∑
ρ∈Rj

(
ρ(σ)−mj

)[
log
(
ρ(σ)−mj

)
− 1
]

Impose 0 = ∂W̃eff/∂σa and σa 6= σb: (quantum equivariant coh) z ' e−t

∏Nf

j=1
(x−mf ) + iNa−Nf z

∏Na

f=1
(x− m̃f ) = C(z)Q(x)T (x)

T (x) has degree N ′ = max(Nf , Na)−N
C(z) =


1 if Nf > Na

1 + z if Nf = Na

iNa−Nf z if Nf < Na

• Duality: T (x) = Q′(x) = det(x− σ′)



Twisted chiral ring

Generators: Trσk k = 1, . . . , N or symm. polynomials in σ = diag(σ1, . . . , σN )

Q(x) = det(x− σ) = xN − xN−1 Trσ + . . .

Relations: effective superpotential on the Coulomb branch t = 2πξ+ iθ

W̃eff = −t
∑
a

σa −
∑
j

∑
ρ∈Rj

(
ρ(σ)−mj

)[
log
(
ρ(σ)−mj

)
− 1
]

Impose 0 = ∂W̃eff/∂σa and σa 6= σb: (quantum equivariant coh) z ' e−t

∏Nf

j=1
(x−mf ) + iNa−Nf z

∏Na

f=1
(x− m̃f ) = C(z)Q(x)T (x)

T (x) has degree N ′ = max(Nf , Na)−N
C(z) =


1 if Nf > Na

1 + z if Nf = Na

iNa−Nf z if Nf < Na

• Duality: T (x) = Q′(x) = det(x− σ′)



Twisted chiral ring

Generators: Trσk k = 1, . . . , N or symm. polynomials in σ = diag(σ1, . . . , σN )

Q(x) = det(x− σ) = xN − xN−1 Trσ + . . .

Relations: effective superpotential on the Coulomb branch t = 2πξ+ iθ

W̃eff = −t
∑
a

σa −
∑
j

∑
ρ∈Rj

(
ρ(σ)−mj

)[
log
(
ρ(σ)−mj

)
− 1
]

Impose 0 = ∂W̃eff/∂σa and σa 6= σb: (quantum equivariant coh) z ' e−t

∏Nf

j=1
(x−mf ) + iNa−Nf z

∏Na

f=1
(x− m̃f ) = C(z)Q(x)T (x)

T (x) has degree N ′ = max(Nf , Na)−N
C(z) =


1 if Nf > Na

1 + z if Nf = Na

iNa−Nf z if Nf < Na

• Duality: T (x) = Q′(x) = det(x− σ′)



S2 partition function [FB, Cremonesi 12; Doroud, Gomis, Le Floch, Lee 12]

Any Euclidean 2d N = (2, 2) theory with RV -symmetry
can be placed supersymmetrically on S2, with no twist.

ZS2(param) =

∫
Dφ e−S(param)

Parameters: complexified FI term t = 2πξ + iθ, z ' e−t

real twisted masses mj , m̃f and flavor magnetic fluxes nj , ñf

R-charges R

Localization:

ZS2 =
1

|W|
∑

m∈ZN

∫
dNσ eiRe W̃

(
σ+ i

2m
)
Z1-loop

Zgauge
1-loop =

∏
roots α>0

(
α(m)2

4
+ α(σ)2

)

Zchiral
1-loop =

∏
chiral Φ

∏
ρ∈Rj

Γ
(R[Φ]

2
− iρ(σ) − if i[Φ]mi − ρ(m)+fi[Φ]ni

2

)
Γ
(
1 − R[Φ]

2
+ iρ(σ) + if i[Φ]mi − ρ(m)+fi[Φ]ni

2

)
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S2 partition function

We can prove:

Z(A)
(
mj , nj , m̃f , ñf ; z

)
= fcontact fKt Z(B)

(
m̃f − i

2 , ñf ,mj − i
2 , ñf ; z−1

)
Method: vortex partition function

ZS2 =
∑

Higgs vacua

Zcl Z
′
1-loop Zvortex Zantivortex

• Mass shift: shift of R-charges, compatible with Wdual

r ≡ R[Q̃fQj ] = R[Mfj ] ⇒ R[q̃jqf ] = 2− r

• fKt: real function → Kähler transformation

FT: Lagrangian term, improvement transformation [Closset, Cremonesi 14]

Geom: according to [Jockers, Kumar, Lapan, Morrison, Romo 12]

ZS2 = e−KKähler

Kähler transformation (does not affect the metric)



S2 partition function

We can prove:

Z(A)
(
mj , nj , m̃f , ñf ; z
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The contact term

• fcontact = eiRe W̃contact : phase

Twisted superpotential, only function of parameters (twisted chirals):

mj + i
2nj , m̃f + i

2 ñf , t

Theory A: W̃A = −tTrσ = log zTrσ

Theory B: result depends on number of flavors

Nf > Na + 1: W̃B = log z−1 Trσ + log zTrm

Nf = Na + 1: W̃B = log z−1 Trσ + log zTrm+ iz

Nf = Na: W̃B = log z−1 Trσ + log z
1+z Trm+ log(1 + z) Tr m̃

If flavor symmetry is gauged, m, m̃ → dynamical twisted chiral multiplets

δW̃ = log zf Trm+ log za Tr m̃

fcontact transforms neighboring FIs.
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Quivers



Quivers and cluster algebras

Class of quiver gauge theories: no 1-cycles nor 2-cycles.

Apply Seiberg-like duality to a node k

• Quiver: almost CA action

Never generate 1-cycles. But assume that all 2-cycles are accompanied by
quadratic superpotential → integrate them out.

• Coefficients. Transformation of ranks N ′ = max(Nf , Na)−N

Tropical semifield P (·,⊕): ua · ub = ua+b, ua ⊕ ub = umax(a,b)

u is formal variable

Ranks: ri = uNi r′j =

{
r−1
k

(∏
i r

[bij ]+
i ⊕

∏
i r

[−bij ]+
i

)
j = k

rj otherwise

Beta-functions: yj ≡
∏
i r
bij
i ⇒ yj = uβj

yj transform as CA coefficients. u interpreted as cutoff scale.
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Cluster variables

Transformation of FI parameters z ' e−t:

Na < Nf : za → za z → z−1 zf → zfz
Na = Nf : za → za(1 + z) z → z−1 zf → zf

z
1+z

Na > Nf : za → zaz z → z−1 zf → zf

From cluster variables define: zj =
∏
i x

bij
i

z′j =

z
−1
k j = k

zjz
[bkj ]+
k

(
yk
yk⊕1zk + 1

yk⊕1

)−bkj

otherwise

• Conformal case — yi ≡ 1:

Transformation of FIs exactly reproduces CA

• General case:

The transformation rules are the u0 term in the expression.
Can be extracted taking u→∞ limit.

→ Cluster algebra encodes the transformations for every possible choice of ranks.



The superpotential

We assumed that whenever Seiberg-like duality generates a 2-cycle,
this is removed by suitable quadratic superpotential term Wquad.

Highly non-trivial!

Q: given a quiver, there ∃ an R-symmetric superpotential W such that
∀ sequences of mutations, 2-cycles are always “massive”?

Such W : non-degenerate graded potential

Theory: non-degenerate if it admits such a potential.

• It is easy to produce examples of degenerate theories

• Complete classification of non-degenerate theories is not known

• E.g.: quivers dual to ideal triangulations of marked Riemann surfaces are
non-degenerate.



The superpotential

We assumed that whenever Seiberg-like duality generates a 2-cycle,
this is removed by suitable quadratic superpotential term Wquad.

Highly non-trivial!

Q: given a quiver, there ∃ an R-symmetric superpotential W such that
∀ sequences of mutations, 2-cycles are always “massive”?

Such W : non-degenerate graded potential

Theory: non-degenerate if it admits such a potential.

• It is easy to produce examples of degenerate theories

• Complete classification of non-degenerate theories is not known

• E.g.: quivers dual to ideal triangulations of marked Riemann surfaces are
non-degenerate.



The Q-polynomial

Twisted chiral ring of the quiver: Qj(x) = det(x− σj)∏
i
Qi(x)[bji]+ + iNa(j)−Nf (j)zj

∏
i
Qi(x)[−bji]+ = Cj(zj) Qj(x) Tj(x) ∀j

Under duality, identify Q′k(x) = Tk(x).

• Define “dressed Q-polynomials”:

Qj(x) ' xj det(x− σj)

Q-polynomials transform as cluster variables!

Q′j(x) =


∏
iQi(x)[bki]+ +

∏
iQi(x)[−bki]+

Qk(x)
j = k

Qj(x) otherwise
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Some applications



The quantum Kähler moduli space

“Conformal” quivers flow to IR CFTs: NLSM on (non-compact) Calabi-Yau’s

Complexified FI parameters zi control Kähler moduli

Metric on Kähler moduli space computed by [Jockers, Kumar, Lapan, Morrison, Romo 12]

ZS2(ti, t̄i) = e−KKähler(ti,t̄i)

Quantum Kähler moduli space has cluster algebra structure

Also has Poisson structure.

• Compact example: Gulliksen-Neg̊ard CY3

X = {φ ∈ P7 | rank(Aa4×4φa) ≤ 2} (h1,1, h2,1) = (2, 34)

Can be realized by a U(1)× U(2) quiver [Jockers, Kumar, Lapan, Morrison, Romo 12]

8 1 2 4

There is a cubic superpotential that breaks the flavor symmetry.
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Quantum integrable systems (spin chains)

Nekrasov-Shatashvili: N = (2, 2) gauge theory ↔ quantum integrable system

Q: Integrable systems for our quivers? Seiberg-like dualities?

• N = (2, 2)∗ SQCD:

{
U(N), Nf hypers (fund + antifund), one adjoint

W = Q̃ΦQ

Param: cplx FI t = 2πξ + iθ, twisted masses mΦ, mQ, m̃Q = −mΦ −mQ

• SU(2) periodic twisted inhomogeneous XXX 1
2

spin chain, Nf nodes,

sector with Sz = −Nf

2 +N (N -particle states), inhomogeneous def’s νa

H = J
∑Nf

a=1
~Sa · ~Sa+1

~SNf+1 = e
i
2ϑσ3 ~S1 e

− i
2ϑσ3

Dictionary: z = e−t = eiϑ, mΦ = −iu, mQ = νau+ i
2u, m̃Q = νau+ i

2u

Twisted chiral ring relations ↔ algebraic Bethe ansatz equations
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Quantum integrable systems (spin chains) [in progress]

Strategy: Construct N = (2, 2)∗ “quivers”

Look for a duality

Limit of parameters → N = (2, 2) cycle-free quiver

Interpret duality in integrable system context

N = (2, 2)∗: diagrams with no arrows N Nf

N Nf

“Particle-hole” duality: U(N) ↔ U(Nf −N)

T ∗Gr(N,Nf ) = T ∗Gr(Nf −N,Nf )

• Limit: mΦ, m̃Q →∞ with mQ fixed.

It is crucial to expand in the correct vacuum.

Duality involves non-trival map of vacua.

Limit does not reproduce Seiberg-like duality directly, but its compatible with it.

Integrable system: “highly quantum and inhomogeneous limit” (u, νa →∞).
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Conclusions



Open directions

Cluster algebra in systems of Picard-Fuchs equations?

GKZ-systems, A-systems, . . . well-understood only for Abelian theories

B-side of the story and Hori-Vafa mirror symmetry

Relation of 2d N = (2, 2) quivers to other physical systems?

Teichmüller theory and class S theories (what is ZS2? what is KKähler?)

Wall crossing of BPS states in 4d N = 2,

DT invariants and quiver quantum mechanics



Thank you!


