Cluster algebras from 2d gauge theories

Francesco Benini

Simons Center for Geometry and Physics Stony Brook University

Texas A&M University Heterotic Strings and (0,2) QFT 28 April 2014

with: D. Park, P. Zhao (to appear)

Introduction

2d gauge theories with $\mathcal{N}=\left(2,2\right)$ supersymmetry

Seiberg-like dualities

 \leftrightarrow

Cluster Algebra structures

Introduction

2d gauge theories with $\mathcal{N}=(2,2)$ supersymmetry

Seiberg-like dualities

 \leftrightarrow

Cluster Algebra structures

Cluster algebra: [Fomin, Zelevinsky 2001] to describe coordinate rings of groups and Grassmannians

Other contexts:

- Teichmuller theory [Fock, Goncharov 03]
- Integrable systems (Y-systems)
- ullet Wall crossing in 4d $\mathcal{N}=2$ theories
- Amplitudes

Many interesting properties:

- Total positivity
- Laurent phenomenon
- Poisson structure
- . . .

Cluster algebra [Fomin, Zelevinsky 01]

Commutative ring with unit and no zero divisors with distinguished set of *generators* called cluster variables.

Set of *cluster variables* = (non-disjoint) union of distinguished collections of n-subsets called clusters.

Cluster algebra [Fomin, Zelevinsky 01]

Commutative ring with unit and no zero divisors with distinguished set of *generators* called cluster variables.

Set of *cluster variables* = (non-disjoint) union of distinguished collections of n-subsets called clusters.

Exchange property (mutations):

for every cluster ${\bf x}$ and $x\in {\bf x}$, there is another cluster obtained by substituting $x\to x'$ with rule

$$xx' = M_1 + M_2$$

 $M_{1,2}$: monomials in n-1 variables $\mathbf{x}\setminus\{x\}$, with no common divisors.

Any two clusters can be obtained from each other by sequence of *mutations*.

Cluster algebra [Fomin, Zelevinsky 06]

• <u>Seed</u> **x**:

Skew-symmetric matrix $b_{ij} \rightarrow \text{quiver } B \text{ (no 1-, 2-cycles)}$ Coefficients $y_i \in \mathbb{P}$ semifield (\cdot, \oplus) (tropical)
Cluster variables x_i .

Cluster algebra [Fomin, Zelevinsky 06]

• <u>Seed</u> **x**:

Skew-symmetric matrix $b_{ij} \rightarrow \text{quiver } B \text{ (no 1-, 2-cycles)}$ Coefficients $y_i \in \mathbb{P}$ semifield (\cdot, \oplus) (tropical) Cluster variables x_i .

• Mutation (at node k):

$$b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = k \text{ or } j = k \\ b_{ij} + \operatorname{sign}(b_{ik}) \left[b_{ik}b_{kj}\right]_{+} & \text{otherwise} \end{cases}$$

$$y_j' = \begin{cases} y_k^{-1} & \text{if } j = k \\ y_j y_k^{[b_{kj}]_+} (y_k \oplus 1)^{-b_{kj}} & \text{otherwise} \end{cases}$$

$$x_j' = \begin{cases} \frac{1}{x_k} \left(\frac{y_k}{y_k \oplus 1} \prod_i x_i^{[b_{ik}]_+} + \frac{1}{y_k \oplus 1} \prod_i x_i^{[-b_{ik}]_+} \right) & \text{if } j = k \\ x_j & \text{otherwise} \end{cases}$$

Hierarchical structure.

Cluster algebra

Total positivity

Cluster algebra transformations involve +, not -. Canonical choice of "positive" submanifold of a cluster manifold.

Cluster algebra

Total positivity

Cluster algebra transformations involve +, not -. Canonical choice of "positive" submanifold of a cluster manifold.

• Laurent phenomenon

Any cluster variable x_i , viewed as a rational function of the variables in a given cluster \mathbf{x}' , is a Laurent polynomial.

It is conjectured that has positive coefficients.

Cluster algebra

Total positivity

Cluster algebra transformations involve +, not -. Canonical choice of "positive" submanifold of a cluster manifold.

Laurent phenomenon

Any cluster variable x_i , viewed as a rational function of the variables in a given cluster \mathbf{x}' , is a Laurent polynomial.

It is conjectured that has *positive* coefficients.

Poisson structure

$$\{x_i, x_j\} = b_{ij}x_ix_j$$
 extend by Liebniz (log canonical)

Such bracket is invariant under mutations.

Outline

- \bullet Seiberg-like dualities of 2d $\mathcal{N}=(2,2)$ gauge theories
- ullet S^2 partition function
- From dualities to cluster algebras
- (Speculative) applications

2d Seiberg-like dualities

2d $\mathcal{N}=(2,2)$ SUSY gauge theories of vector and chiral multiplets

A:
$$U(N)$$
 with N_f fundamentals, N_a antifundamentals \uparrow

B: $U\big(\max(N_f,N_a)-N\big)$ with N_a fundamentals, N_f antifundamentals, N_fN_a gauge singlets, superpotential $W_{\rm dual}=\tilde{q}Mq$

2d $\mathcal{N}=(2,2)$ SUSY gauge theories of vector and chiral multiplets

A: U(N) with N_f fundamentals, N_a antifundamentals \uparrow

B: $U\big(\max(N_f,N_a)-N\big)$ with N_a fundamentals, N_f antifundamentals, N_fN_a gauge singlets, superpotential $W_{\rm dual}=\tilde{q}Mq$

Comments:

- ullet cfr. with 4d: no gauge anomaly o any N_f,N_a
- ullet similar to Hori-Tong duality but U(N) instead of SU(N)
- $N_f = N_a$: flow to IR CFT (otherwise gapped)
- deformations: complexified FI term, twisted masses, superpotential terms

$$t = 2\pi\xi + i\theta$$
, m_j , \tilde{m}_f \Rightarrow $z \simeq e^{-t}$, $z = \frac{1}{z'}$

Geometric interpretation [Jia, Sharpe, Wu 14]

Large positive FI (assume $N_f \geq N_a$): geometric realization

$$\operatorname{\sf Gr}(N,N_f) \hspace{0.5cm} = \hspace{0.5cm} \operatorname{\sf Gr}(N_f-N,N_F)$$

ullet Theory A: each antifundamental gives a copy of tautological bundle S

Equality of bundles:

$$S^{N_a} \to \operatorname{Gr}(N, N_f) \qquad = \qquad (Q^*)^{N_a} \to \operatorname{Gr}(N_f - N, N_f)$$

Universal quotient bundle: $0 \to S \to \mathcal{O}^{N_f} \to Q \to 0$

ullet Theory B: mesons give $(\mathcal{O}^{N_f})^{N_a}$, superpotential imposes short exact sequence.

Chiral ring

Chiral operators modulo F-term relations

Theory A:
$$\tilde{Q}_f Q_j$$
 (no baryons)

Theory B:
$$ilde{q}_j q_f$$
, M_{fj} , but W imposes $ilde{q}_j q_f = 0$

Map:
$$ilde{Q}_f Q_j = M_{fj}$$

No quantum corrections in the chiral ring

• Add superpotential $W = f(\tilde{Q}_f Q_j) = f(M_{fj})$

Twisted chiral ring

Generators: $\operatorname{Tr} \sigma^k \ k = 1, \dots, N$ or symm. polynomials in $\sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_N)$

$$Q(x) = \det(x - \sigma) = x^{N} - x^{N-1} \operatorname{Tr} \sigma + \dots$$

Twisted chiral ring

Generators: $\operatorname{Tr} \sigma^k \ k = 1, \dots, N$ or symm. polynomials in $\sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_N)$

$$Q(x) = \det(x - \sigma) = x^{N} - x^{N-1} \operatorname{Tr} \sigma + \dots$$

Relations: effective superpotential on the Coulomb branch $t=2\pi\xi+i\theta$

$$\widetilde{W}_{\mathsf{eff}} = -t \sum_{a} \sigma_{a} - \sum_{j} \sum_{\rho \in R_{j}} \left(\rho(\sigma) - m_{j} \right) \left[\log \left(\rho(\sigma) - m_{j} \right) - 1 \right]$$

Impose $0=\partial \widetilde{W}_{\rm eff}/\partial \sigma_a$ and $\sigma_a \neq \sigma_b$: (quantum equivariant coh) $z\simeq e^{-t}$

$$\left| \prod_{j=1}^{N_f} (x - m_f) + i^{N_a - N_f} z \prod_{f=1}^{N_a} (x - \tilde{m}_f) = C(z) Q(x) T(x) \right|$$

$$T(x)$$
 has degree $N' = \max(N_f, N_a) - N$
$$C(z) = \begin{cases} 1 \\ 1 + z \end{cases}$$

$$C(z) = \begin{cases} 1 & \text{if } N_f > N_a \\ 1+z & \text{if } N_f = N_a \\ i^{N_a - N_f} z & \text{if } N_f < N_a \end{cases}$$

Twisted chiral ring

<u>Generators</u>: $\operatorname{Tr} \sigma^k \ k = 1, \dots, N$ or symm. polynomials in $\sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_N)$

$$Q(x) = \det(x - \sigma) = x^{N} - x^{N-1} \operatorname{Tr} \sigma + \dots$$

Relations: effective superpotential on the Coulomb branch $t=2\pi\xi+i\theta$

$$\widetilde{W}_{\text{eff}} = -t \sum_{a} \sigma_{a} - \sum_{j} \sum_{\rho \in R_{j}} (\rho(\sigma) - m_{j}) \left[\log \left(\rho(\sigma) - m_{j} \right) - 1 \right]$$

Impose $0=\partial \widetilde{W}_{\rm eff}/\partial \sigma_a$ and $\sigma_a \neq \sigma_b$: (quantum equivariant coh) $z\simeq e^{-t}$

$$\boxed{\prod_{j=1}^{N_f} (x - m_f) + i^{N_a - N_f} z \prod_{f=1}^{N_a} (x - \tilde{m}_f) = C(z) Q(x) T(x)}$$

$$T(x)$$
 has degree $N' = \max(N_f, N_a) - N$

$$C(z) = \begin{cases} 1 & \text{if } N_f > N_a \\ 1 + z & \text{if } N_f = N_a \\ i^{N_a - N_f} z & \text{if } N_f < N_a \end{cases}$$

Duality: $T(x) = Q'(x) = \det(x - \sigma')$

Any Euclidean 2d $\mathcal{N}=(2,2)$ theory with R_V -symmetry can be placed supersymmetrically on S^2 , with no twist.

$$Z_{S^2}(\mathsf{param}) = \int \mathcal{D}\phi \ e^{-S(\mathsf{param})}$$

Parameters:

- complexified FI term $t = 2\pi \xi + i\theta$. $z \simeq e^{-t}$
- real twisted masses m_i , \tilde{m}_f and flavor magnetic fluxes \mathfrak{n}_i , $\tilde{\mathfrak{n}}_f$
- R-charges R

Any Euclidean 2d $\mathcal{N}=(2,2)$ theory with R_V -symmetry can be placed supersymmetrically on S^2 , with no twist.

$$Z_{S^2}(\mathsf{param}) = \int \mathcal{D}\phi \; e^{-S(\mathsf{param})}$$

Parameters:

- complexified FI term $t = 2\pi \xi + i\theta$, $z \simeq e^{-t}$
- real twisted masses m_i , \tilde{m}_f and flavor magnetic fluxes \mathfrak{n}_i , $\tilde{\mathfrak{n}}_f$
- R-charges R

Localization:

$$Z_{S^2} = \frac{1}{|\mathcal{W}|} \sum_{\mathfrak{m} \in \mathbb{Z}^N} \int d^N \sigma \ e^{i \operatorname{\mathbb{R}e} \widetilde{W} \left(\sigma + \frac{i}{2} \mathfrak{m}\right)} \ Z_{1\text{-loop}}$$

$$\begin{split} Z_{\text{1-loop}}^{\text{gauge}} &= \prod_{\text{roots }\alpha>0} \left(\frac{\alpha(\mathfrak{m})^2}{4} + \alpha(\sigma)^2\right) \\ Z_{\text{1-loop}}^{\text{chiral}} &= \prod_{\text{chiral }\Phi} \prod_{\rho \in \mathfrak{R}_i} \frac{\Gamma\left(\frac{R[\Phi]}{2} - i\rho(\sigma) - if^i[\Phi]m_i - \frac{\rho(\mathfrak{m}) + f^i[\Phi]n_i}{2}\right)}{\Gamma\left(1 - \frac{R[\Phi]}{2} + i\rho(\sigma) + if^i[\Phi]m_i - \frac{\rho(\mathfrak{m}) + f^i[\Phi]n_i}{2}\right)} \end{split}$$

S^2 partition function

We can prove:

$$Z^{(A)}\big(m_j,\mathfrak{n}_j,\tilde{m}_f,\tilde{\mathfrak{n}}_f;z\big) = f_{\mathsf{contact}} \ f_{\mathsf{Kt}} \ Z^{(B)}\Big(\tilde{m}_f - \tfrac{i}{2},\tilde{\mathfrak{n}}_f,m_j - \tfrac{i}{2},\tilde{\mathfrak{n}}_f;z^{-1}\Big)$$

Method: vortex partition function

$$Z_{S^2} = \sum_{\mathsf{Higgs\ vacua}} Z_{\mathsf{cl}}\ Z'_{\mathsf{1-loop}}\ Z_{\mathsf{vortex}}\ Z_{\mathsf{antivortex}}$$

S^2 partition function

We can prove:

$$Z^{(A)}\big(m_j,\mathfrak{n}_j,\tilde{m}_f,\tilde{\mathfrak{n}}_f;z\big) = f_{\mathsf{contact}} \ f_{\mathsf{Kt}} \ Z^{(B)}\Big(\tilde{m}_f - \tfrac{i}{2},\tilde{\mathfrak{n}}_f,m_j - \tfrac{i}{2},\tilde{\mathfrak{n}}_f;z^{-1}\Big)$$

Method: vortex partition function

$$Z_{S^2} = \sum_{ ext{Higgs vacua}} Z_{ ext{cl}} \; Z'_{ ext{1-loop}} \; Z_{ ext{vortex}} \; Z_{ ext{antivortex}}$$

ullet Mass shift: shift of R-charges, compatible with $W_{
m dual}$

$$r \equiv R[\tilde{Q}_f Q_j] = R[M_{fj}] \qquad \Rightarrow \qquad R[\tilde{q}_j q_f] = 2 - r$$

• f_{Kt} : real function \to Kähler transformation

FT: Lagrangian term, improvement transformation

[Closset, Cremonesi 14]

Geom: according to [Jockers, Kumar, Lapan, Morrison, Romo 12]

$$Z_{S^2} = e^{-K_{\mathsf{K\"{a}hler}}}$$

Kähler transformation (does not affect the metric)

The contact term

• $f_{\text{contact}} = e^{i \operatorname{\mathbb{R}} e \widetilde{W}_{\text{contact}}}$: phase

Twisted superpotential, only function of parameters (twisted chirals):

$$m_j + \frac{i}{2}\mathfrak{n}_j \;, \qquad \tilde{m}_f + \frac{i}{2}\tilde{\mathfrak{n}}_f \;, \qquad t$$

Theory A:
$$\widetilde{W}_A = -t \operatorname{Tr} \sigma = \log z \operatorname{Tr} \sigma$$

Theory B: result depends on number of flavors

- $N_f > N_a + 1$: $\widetilde{W}_B = \log z^{-1} \operatorname{Tr} \sigma + \log z \operatorname{Tr} m$
- $N_f = N_a + 1$: $\widetilde{W}_B = \log z^{-1} \operatorname{Tr} \sigma + \log z \operatorname{Tr} m + iz$
- $N_f = N_a$: $\widetilde{W}_B = \log z^{-1} \operatorname{Tr} \sigma + \log \frac{z}{1+z} \operatorname{Tr} m + \log(1+z) \operatorname{Tr} \tilde{m}$

The contact term

• $f_{\mathsf{contact}} = e^{i\,\mathbb{R}\mathrm{e}\,\widetilde{W}_{\mathsf{contact}}}$: phase

Twisted superpotential, only function of parameters (twisted chirals):

$$m_j + \frac{i}{2}\mathfrak{n}_j \;, \qquad \tilde{m}_f + \frac{i}{2}\tilde{\mathfrak{n}}_f \;, \qquad t$$

Theory A:
$$\widetilde{W}_A = -t \operatorname{Tr} \sigma = \log z \operatorname{Tr} \sigma$$

Theory B: result depends on number of flavors

- $N_f > N_a + 1$: $\widetilde{W}_B = \log z^{-1} \operatorname{Tr} \sigma + \log z \operatorname{Tr} m$
- $N_f = N_a + 1$: $\widetilde{W}_B = \log z^{-1} \operatorname{Tr} \sigma + \log z \operatorname{Tr} m + iz$
- $N_f = N_a$: $\widetilde{W}_B = \log z^{-1} \operatorname{Tr} \sigma + \log \frac{z}{1+z} \operatorname{Tr} m + \log(1+z) \operatorname{Tr} \tilde{m}$

If flavor symmetry is gauged, $m,\ \tilde{m} o$ dynamical twisted chiral multiplets

$$\delta \widetilde{W} = \log z_f \operatorname{Tr} m + \log z_a \operatorname{Tr} \widetilde{m}$$

 $f_{\rm contact}$ transforms neighboring FIs.

Quivers and cluster algebras

Class of quiver gauge theories: no 1-cycles nor 2-cycles.

Apply Seiberg-like duality to a node k

Quiver: almost CA action

Never generate 1-cycles. But assume that all 2-cycles are accompanied by quadratic superpotential \rightarrow integrate them out.

Quivers and cluster algebras

Class of quiver gauge theories: no 1-cycles nor 2-cycles.

Apply Seiberg-like duality to a node \boldsymbol{k}

Quiver: almost CA action

Never generate 1-cycles. But assume that all 2-cycles are accompanied by quadratic superpotential \rightarrow integrate them out.

ullet Coefficients. Transformation of ranks $N' = \max(N_f, N_a) - N$

Tropical semifield
$$\mathbb{P}(\cdot,\oplus)$$
: $u^a\cdot u^b=u^{a+b}, \qquad u^a\oplus u^b=u^{\max(a,b)}$

 \boldsymbol{u} is formal variable

$$\text{Ranks: } r_i = u^{N_i} \qquad \qquad r_j' = \begin{cases} r_k^{-1} \big(\prod_i r_i^{\lfloor b_{ij} \rfloor_+} \oplus \prod_i r_i^{\lfloor -b_{ij} \rfloor_+} \big) & j = k \\ r_j & \text{otherwise} \end{cases}$$

Beta-functions:
$$y_j \equiv \prod_i r_i^{b_{ij}} \quad \Rightarrow \quad \boxed{y_j = u^{\beta_j}}$$

 y_j transform as CA coefficients. u interpreted as cutoff scale.

Cluster variables

Transformation of FI parameters $z \simeq e^{-t}$:

$$\begin{array}{lll} N_a < N_f: & z_a \rightarrow z_a & z \rightarrow z^{-1} & z_f \rightarrow z_f z \\ N_a = N_f: & z_a \rightarrow z_a (1+z) & z \rightarrow z^{-1} & z_f \rightarrow z_f \frac{z}{1+z} \\ N_a > N_f: & z_a \rightarrow z_a z & z \rightarrow z^{-1} & z_f \rightarrow z_f \end{array}$$

From cluster variables define: $z_j = \prod_i x_i^{b_{ij}}$

$$z_j' = \begin{cases} z_k^{-1} & j = k \\ z_j z_k^{[b_{kj}]_+} \left(\frac{y_k}{y_k \oplus 1} z_k + \frac{1}{y_k \oplus 1}\right)^{-b_{kj}} & \text{otherwise} \end{cases}$$

• Conformal case — $y_i \equiv 1$:

Transformation of FIs exactly reproduces CA

General case:

The transformation rules are the u^0 term in the expression.

Can be extracted taking $u \to \infty$ limit.

ightarrow Cluster algebra encodes the transformations for every possible choice of ranks.

The superpotential

We assumed that whenever Seiberg-like duality generates a 2-cycle, this is removed by suitable $\it quadratic$ superpotential term $W_{\rm quad}.$

Highly non-trivial!

 $\frac{\mathbb{Q}}{\forall}$: given a quiver, there \exists an R-symmetric superpotential W such that \forall sequences of mutations, 2-cycles are always "massive"?

The superpotential

We assumed that whenever Seiberg-like duality generates a 2-cycle, this is removed by suitable *quadratic* superpotential term $W_{\rm quad}$.

Highly non-trivial!

 $\underline{\mathbb{Q}}$: given a quiver, there \exists an R-symmetric superpotential W such that \forall sequences of mutations, 2-cycles are always "massive"?

Such W: non-degenerate graded potential

Theory: non-degenerate if it admits such a potential.

- It is easy to produce examples of degenerate theories
- Complete classification of non-degenerate theories is *not* known
- E.g.: quivers dual to ideal triangulations of marked Riemann surfaces are non-degenerate.

The Q-polynomial

Twisted chiral ring of the quiver: $Q_j(x) = \det(x - \sigma_j)$

$$\prod\nolimits_{i} Q_{i}(x)^{[b_{ji}]_{+}} + i^{N_{a}(j) - N_{f}(j)} z_{j} \prod\nolimits_{i} Q_{i}(x)^{[-b_{ji}]_{+}} = C_{j}(z_{j}) \; Q_{j}(x) \; T_{j}(x) \qquad \forall j$$

Under duality, identify $Q'_k(x) = T_k(x)$.

The Q-polynomial

Twisted chiral ring of the quiver: $Q_j(x)=\det(x-\sigma_j)$ $\prod_i Q_i(x)^{[b_{ji}]_+}+i^{N_a(j)-N_f(j)}z_j\prod_i Q_i(x)^{[-b_{ji}]_+}=C_j(z_j)\;Q_j(x)\;T_j(x) \qquad \forall j$ Under duality, identify $Q_k'(x)=T_k(x)$.

Define "dressed Q-polynomials":

$$Q_j(x) \simeq x_j \det(x - \sigma_j)$$

Q-polynomials transform as cluster variables!

$$\mathcal{Q}_j'(x) = \begin{cases} \frac{\prod_i \mathcal{Q}_i(x)^{[b_{ki}]_+} + \prod_i \mathcal{Q}_i(x)^{[-b_{ki}]_+}}{\mathcal{Q}_k(x)} & j = k\\ \mathcal{Q}_j(x) & \text{otherwise} \end{cases}$$

Some applications

The quantum Kähler moduli space

"Conformal" quivers flow to IR CFTs: NLSM on (non-compact) Calabi-Yau's

Complexified FI parameters z_i control Kähler moduli

Metric on Kähler moduli space computed by [Jockers, Kumar, Lapan, Morrison, Romo 12]

$$Z_{S^2}(t_i, \bar{t}_i) = e^{-K_{\mathsf{K\"{a}hler}}(t_i, \bar{t}_i)}$$

Quantum Kähler moduli space has cluster algebra structure

Also has Poisson structure.

The quantum Kähler moduli space

"Conformal" quivers flow to IR CFTs: NLSM on (non-compact) Calabi-Yau's

Complexified FI parameters z_i control Kähler moduli

Metric on Kähler moduli space computed by [Jockers, Kumar, Lapan, Morrison, Romo 12]

$$Z_{S^2}(t_i, \bar{t}_i) = e^{-K_{\mathsf{K\"{a}hler}}(t_i, \bar{t}_i)}$$

Quantum Kähler moduli space has cluster algebra structure

Also has Poisson structure.

• Compact example: Gulliksen-Negård CY₃

$$\mathcal{X} = \{ \phi \in \mathbb{P}^7 \mid \operatorname{rank}(A^a_{4 \times 4} \phi_a) \le 2 \} \qquad \qquad (h^{1,1}, h^{2,1}) = (2, 34)$$

Can be realized by a $U(1) \times U(2)$ quiver

[Jockers, Kumar, Lapan, Morrison, Romo 12]

There is a cubic superpotential that breaks the flavor symmetry.

Quantum integrable systems (spin chains)

Nekrasov-Shatashvili: $\mathcal{N}=(2,2)$ gauge theory $\qquad \leftrightarrow \qquad$ quantum integrable system

Q: Integrable systems for our quivers? Seiberg-like dualities?

Quantum integrable systems (spin chains)

Nekrasov-Shatashvili: $\mathcal{N}=(2,2)$ gauge theory $\qquad \leftrightarrow \qquad$ quantum integrable system

 $\underline{\mathbb{Q}} {:}$ Integrable systems for our quivers? Seiberg-like dualities?

$$\bullet \quad \mathcal{N}=(2,2)^* \text{ SQCD:} \quad \left\{ \begin{array}{l} U(N)\text{, N_f hypers (fund + antifund), one adjoint} \\ W=\tilde{Q}\Phi Q \end{array} \right.$$

Param: cplx FI $t=2\pi\xi+i\theta$, twisted masses m_Φ , m_Q , $\tilde{m}_Q=-m_\Phi-m_Q$

• SU(2) periodic twisted inhomogeneous XXX $_{1\over 2}$ spin chain, N_f nodes, sector with $S_z=-{N_f\over 2}+N$ (N-particle states), inhomogeneous def's ν_a

$$H = J \sum_{a=1}^{N_f} \vec{S}_a \cdot \vec{S}_{a+1} \qquad \vec{S}_{N_f+1} = e^{\frac{i}{2}\vartheta\sigma_3} \vec{S}_1 e^{-\frac{i}{2}\vartheta\sigma_3}$$

Twisted chiral ring relations $\ \leftrightarrow \$ algebraic Bethe ansatz equations

Quantum integrable systems (spin chains) [in progress]

Strategy:

- Construct $\mathcal{N} = (2,2)^*$ "quivers"
- Look for a duality
- Limit of parameters \rightarrow $\mathcal{N}=(2,2)$ cycle-free quiver
- Interpret duality in integrable system context

 $\mathcal{N}=(2,2)^*$: diagrams with no arrows

Quantum integrable systems (spin chains) [in progress]

- Strategy:
- Construct $\mathcal{N} = (2,2)^*$ "quivers"
- Look for a duality
- Limit of parameters \rightarrow $\mathcal{N}=(2,2)$ cycle-free quiver
- Interpret duality in integrable system context

$$\mathcal{N}=(2,2)^*$$
: diagrams with no arrows

"Particle-hole" duality:
$$U(N) \leftrightarrow U(N_f-N)$$
 $T^*\mathrm{Gr}(N,N_f)=T^*\mathrm{Gr}(N_f-N,N_f)$

- <u>Limit</u>: $m_{\Phi}, \tilde{m}_Q \to \infty$ with m_Q fixed.
- It is crucial to expand in the correct vacuum.
- Duality involves non-trival map of vacua.

Limit does not reproduce Seiberg-like duality directly, but its compatible with it.

Integrable system: "highly quantum and inhomogeneous limit" $(u, \nu_a o \infty)$.

Open directions

Cluster algebra in systems of Picard-Fuchs equations?
 GKZ-systems, A-systems, ... well-understood only for Abelian theories

- B-side of the story and Hori-Vafa mirror symmetry
- Relation of 2d $\mathcal{N}=(2,2)$ quivers to other physical systems? Teichmüller theory and class \mathcal{S} theories (what is Z_{S^2} ? what is $K_{\mathsf{K\ddot{a}hler}}$?) Wall crossing of BPS states in 4d $\mathcal{N}=2$, DT invariants and quiver quantum mechanics

Thank you!