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Quantum Context

One-loop quantum corrections to General relativity in
4-dimensional spacetime produce ultraviolet divergences of
curvature-squared structure.

G. 't Hooft and M. Veltman, Ann. Inst. Henri Poincaré 20, 69 (1974)

Inclusion of [ d*x\/—g(aCpyps CH?7 + BR?) terms ab initio in
the gravitational action leads to a renormalizable D = 4 theory,
but at the price of a loss of unitarity owing to the modes arising
from the aC,,, 0 C*7P7 term, where C,,,, is the Weyl tensor.
K.S.S., Phys. Rev. D16, 953 (1977)

[In D = 4 spacetime dimensions, this (Weyl)? term is equivalent,
up to a topological total derivative via the Gauss-Bonnet theorem,
to the combination a (R, R — %RZ)].

)
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Despite the apparent nonphysical behavior, quadratic-curvature
gravities continue to be explored in a number of contexts:

e Cosmology: Starobinsky's original model for inflation was
based on a [ d*xy/—g(—R + BR?) model.
A.A. Starobinsky 1980; Mukhanov & Chibisov 1981
This early model has been quoted (at times) as a good fit to
CMB fluctuation data from the Planck satellite.

J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787

e The asymptotic safety scenario considers the possibility that
there may be a non-Gaussian renormalization-group fixed
point and associated flow trajectories on which the ghost
states arising from the (Weyl)2 term could be absent.

S. Weinberg 1976, M. Reuter 1996, M. Niedermaier 2009
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Renormalization-group trajectories in coupling-constant space ending on a
non-Gaussian fixed point with finite gyewton and cosmological constant A.

Niedermaier 2009
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Classical gravity with higher derivatives

We shall not try here to settle philosophical debates about various
attitudes that can be taken towards the implementation of
quantum corrections, but shall simply adopt a point of view taking
the higher-derivative terms and their consequences for gravitational
field-theory solutions seriously in the classical effective action.

Accordingly, we shall consider the gravitational action

| = /d4x\/—g(fyR — aChupo CMP° + BR?).

The field equations following from this higher-derivative action are
1 2
H[.Ll/ = 7 <R,u,u - 2g;wR> + g (Oé — 35) VHVVR — ZOéDRMV
1 - 2
+§ (Oé + 6B) g”,,DR —4aR me)\ +2( 8+ ga RRMV

1 2 1
+58uw <2aR’7’\R77,\ — <ﬁ + 3a> R2> =5 Tw
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Full nonlinear field equations for spherical symmetry
Use Schwarzschild coordinates
ds?> = —B(r)dt? + A(r)dr® + r?(d6? + sin2 0dp?)
The first equation contains the third-order derivative B3) = B"”
(Written in an older parametrization. To obtain the new
parametrization, one should first substitute 5 — (5 + %a, and then

a — 2a.)
VAB . 2 3 b 2p3p/
0 = T2 5t (16(A —1)A?B*(5a + (a — 28)A — 148) — 32r(a — 48)A’B*B

+47‘232(7(3a —8B)B*A” + 2AB (2(88 — 3a)BA” + (163 — 5a) A'B’)

442 (8(a — 48)BB” + (328 — 11a) B'2) + 4yA' B2 — 47A332)

74TBB(4ABB” ((a — 4B)BA’ + (o — 68)AB')

+B' (=7(a — 48)B*A” + 4AB (o« — 48) BA" + BA'B') — (o — 88) A’ B” + 4vA*B?) )
+ri(a - 28) (6ABB’2 (A'B' — 2AB")

+B? (-8AA'B'B" + B (TA® — 4AA") ~ 44*B") + 7A*B")

+B®) (8r*(a — 28) A’ BB’ + 161° (o — 48) A% B?) )



The second equation contains the third-order derivative A®) = A"

VAB
22 A5 B4 (2(a — 48)B + r(a — 28)B')°
16(cv — 38) (o — 4B)(A — 1) A% (a + 28 + (a — 28)A) B®
+16(cr — 38)A2B* (2(01 —48) (=20 + 28 + (a — 2B) A)BA
+Ha = 28)(A= DA+ 25+ (a = 28)A)B')r
+4AB3( —4B(a — 4B)yB2A* — 4 (—B(a — 4B)YB? + (a — 2B)*(a — 38)B") A®
+(a—308)B' (4BA'(a — 28)* + (3® — 48a — 163%) B') A
—2(c = 38)B ((3a® — 88 + 88%) A'B’ — 2a(a — 48)BA") A
—(a —48)(a — 38)(5a + gﬁ)BZA'2)r2
(o — 43)32( +2(a — 28)7B2B'A® + 2(a — 28)yB2B'A*
+ (=4BvA'B® 4 2(cv + 48) (e — 38)B'B" B — (o — 35) (3 + 48) B'%) A®
+2(a = 38)B (aBB'A" + A' (aBB" — 2(a + B)B")) A
—a(a— 38)B2A’ (5A'B' + 26BA") A + 28a(a — 36)B3A’3) r?
+(a— 2,6)3( — 4yB? (o — 68)B™ — 2(a — 48)BB") A*
+( = (a = 38)(5a + 48)B" + 8a(a — 38)BB" B — 4(a — 2B)yB*A'B’
—4(a — 4p)(a — 38)B*B"?) A*
+2(a— 38)BB' (4aBB'A" + A’ (48 — 5a) B™ + 2(3a — 88) BB")) A®
—(a— 38)B*A'B' (3(Ta — 48)A'B' + 52aBA") A + 560(a — 3,3)133/4'313')#
—(a—2B)?AB' (AB™ + B(A'B' — 2AB")) (+ 29A%B? + (a — 38)A'B'B
+(a—38)A (B* - 2BB") )s®

+ (16r°a(a — 38)(a — 48) A’ B® + 8r*a(a — 28) (o — 38)A*B'B*) A(3>>



Separation of modes in the linearized theory
Solving the full nonlinear field equations is clearly a challenge. One
can make initial progress by restricting the metric to infinitesimal
fluctuations about flat space, defining hy, = k™ 1(gu — 1) and then
restricting attention to field equations linearized in h,,, or equivalently
by restricting attention to quadratic terms in h,, in the action.

The action then becomes

1., .

hin = / d4x{—1h” (200 — v)OPR)  h°

1 v S a
+5 1660 = 1IOPOH)
1 'S

P ;(ﬁf)pﬂ = E(Q#PQW + 0uobup) — P ;(L%pt)‘f

. 1
Pl(t?/;t)f = 59!“’9,00 Opv = N — W W = 0,0, /0,

where the indices are lowered and raised with the background metric
Ny -
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From this linearized action one deduces the dynamical content of
the linearized theory: positive-energy massless spin-two,

. . . . 1 _
negative-energy massive spin-two with mass mp = v2(2a)~2 and

NI= ol

.. . . . 1 _
positive-energy massive spin-zero with mass mg = vy2(63) ™ 2.

K.S.S. 1978

~IAY Y

A simple model of what has happened can be made with a single
scalar field and a higher-derivative action coupled to a source J:

hy = / d*x(—30,00"¢ + 300,000 ¢ + Jo)

Going over to momentum space k", one can solve for ¢ and then
separate the propagator into partial fractions:

¢ = B
 k2(k2+1/a) k2 K241/«
similar to the structure found in quadratic gravity, but without the
spin complications.
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For this scalar model system, one can introduce interpolating fields
1 and A giving the same dynamics:

1
I / 8*x(~ 300" + 300N + 53X+ J(+ N))

Noting the opposite signs for the 1) and X kinetic terms in the
Lagrangian, one finds for A a momentum-space massive propagator
with m3 = 1/a but with a nonstandard sign of the residue:

—J

A= e 1a

The interpretation of this nonstandard sign for the massive
interpolating field A presents a devil’s alternative. Supply a +ie
shift in the denominator in order to make the inverse Fourier
transform unambiguous,

—J

A= —5—"—
k?+1/a+ie
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The +ie sign choice with the negative-residue propagator for A
amounts, in the Feynman-ordered inverse Fourier transform, to a
choice between negative-energy states with positive norm in the
state vector space, or positive-energy states with negative norm in

the state vector space (aka “ghosts”).

It is such ghosts that one

hopes might be avoided by a careful treatment in the asymptotic

safety program.

Im(K’)

1 .
K= (-I+iew2) k= {1 +ica/2)
X Re(kO)
*
K= ja (-l-iea/2) K= 0&1 ica/2)

Inverse-Fourier transform +/e choices for a negative-residue propagator
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Static and spherically symmetric solutions
Now we come to the question of what happens to spherically
symmetric gravitational solutions in the higher-curvature theory.

Work in Schwarzschild coordinates
ds? = —B(r)dt® + A(r)dr? + r?(d6? + sin® 0dp?)

In the linearized theory, one then finds the general solution to the

source-free field equations Hﬁy =0, where
C,C?0 C?+ (€%, CO*, C%~ are integration constants:

A(r) =
20 mor —mor
C o em e m
1-——-C"— - C7 —
r 2r 2r
—|—%C2+m2em2r - %CZ_mge_'"” — C% mge™" + CO mge="0"

B(r) =
C20 mor
C+ r+C”e +C2er

or
+ CO+L + Co-f
r

—mor

+C“e e S
-
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e As one might expect from the dynamics of the linearized
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

e When coupling to non-gravitational matter fields is made via
standard h** T, minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point-source positive-energy matter delta function
T = 5253/\/153()?), for example, one finds

/12M(1+m2r) e"mr /42I\/I(l+mor) e Mo’

A(r) = 1+3 87r’yr - 127y r 481y r
mor K,2M e—mor

K2ZM e~
B(r) = 1= g ;T %0 7 — 5407

8ﬂ7r
with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and
spin-zero sectors.
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Note that in the Einstein-plus-quadratic-curvature theory, there is
no Birkhoff theorem. For example, in the linearized theory, coupling
to the stress tensor for an extended source like a perfect fluid with
pressure P constrained within a radius £ by an elastic membrane,

Ty = diag[P, [P—3£5(r—0)]r, [P—3¢5(r—0)]r sin 6, 3M(4nt®) 1],

one finds for the external B(r) function

B(r) =1-— KZM n K2e—mr I\/I3 Ecosh(2m2€ sinh m2£
8myr yr 2nl ms
_p [sinh(;ngf) B Ecosh(2m2€) N smh m2£ ]}
m; m;
_n2e*’"°r M [ £cosh(mgl) smh moﬁ
2yr 47 (3 m2
sinh(mof) £ cosh(mol) — ¢2 smh(mof
—P 3 a 2 +
mg mg 3mg

which limits to the point-source result as ¢/ — 0.
14 /34



Frobenius Asymptotic Analysis

Asymptotic analysis of the field equations near the origin leads to
study of the indicial equations for behavior as r — 0. «ss. 1978
Let

A(r) = asrs+as+1rs+1+as+2r5+2+"'
B(r) = btrt"‘bt+1rt+1+bt+2rt+2+"‘

and analyze the conditions necessary for the lowest-order terms in
r of the field equations H,,, = 0 to be satisfied. This gives the
following results, for the general «, 3 theory:

(s,t) = (1,—1)  with 4 free parameters

(s,t) = (0,0) with 3 free parameters

(s,t) = (2,2) with 6 free parameters

Li, Perkins, Pope & K.S.S., in preparation
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Now suppose one puts an “egg-shell” d-function source at some
small distance e from the origin. Consider solving these sourced
equations, similarly to the linearized theory analysis. Inside the
shell, the solution can only be of the (0,0) nonsingular type, which
needs no source. Suppose that outside one has a solution that
would be of (2,2) type if one continued it all the way in to r = 0.

Count parameters: 3 inside 4+ 6 outside = 9 initially. However,
there are 6 continuity and ‘jump’ conditions coming from the field
equations. So one really has 9-6=3 parameters still free. These 3
so-far unfixed parameters are just what is needed for 2 boundary
conditions at infinity, to eliminate the rising exponential solutions,
plus the ‘trivial’ parameter that is fixed by requiring goo — —1 as
r— oo.

Conclusion: the exterior (2,2) solution works well with a source in
the full non-linear theory. Exterior (1,-1) and (0,0) solutions would,
however, be overdetermined. So coupling to a standard
positive-energy source works only in the (2,2) family.

16
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No-hair Theorems and Horizons
W. Nelson, Phys.Rev. D82 (2010) 104026; arXiv:1010.3986; H. Lii, A. Perkins, C.N. Pope & K.S.S., in preparation
e For 3> 0 (i.e. for non-tachyonic m3 > 0), take the trace of
the H,, = 0 field equation: (D — %) R = 0. Then multiply

by A2R and integrate with fﬁ over a 3D spatial slice at a
fixed time, on which h,p is the 3D metric and A = —t?tPg,, is
the norm of the timelike Killing vector t? orthogonal to the
slice. Integrating by parts, one obtains

/d3xx/E[Da(A%RDaR) — \2(D?R)(D,R) — mA:R?} =0

where D, is a 3D covariant derivative on the spatial slice.

From this, provided the boundary term arising from the total
derivative gives a zero contribution, and for m3 > 0, one
learns R = 0. The boundary at spatial infinity gives a
vanishing contribution provided R — 0 as r — oc.

e The inner boundary at a horizon null-surface will give a zero

contribution since A = 0 there. S



Consequently, for asymptotically flat solutions with a horizon, one
concludes that one must have R = 0. This already excludes the
possibility of the scalar mg Yukawa correction found in the limit as
r — o0o. So, for solutions that do have such a scalar Yukawa
correction to the classic GR behavior, one directly concludes:
there can be no horizon.

What about the non-trace part of the field equation and the
spin-two my Yukawa corrections? Nelson's paper would have
allowed one to make a similar conclusion for the rest of R, .
Unfortunately, detailed analysis of his paper shows that it has a
fundamental flaw: instead of a sum of squares of the same sign,
one gets squares of opposite SigNns. Li, Perkins, Pope & K55, in preparation
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If one assumes the existence of a horizon, one can carry out a
similar expansion and parameter count to the ones made near the
origin. Assuming asymptotic flatness at infinity, one obtains R =0
as above. The field equations then become identical to those in
the special 3 = 0 case, i.e. with just a (Weyl)? term and no R?
term in the action.

Counting parameters in the expansion around the horizon, subject
to the R = 0 condition, one finds 3 parameters. This is the same
count as in the (1,-1) family of the expansion around the origin
when subjected to the R = 0 condition. So asymptotically flat
solutions with a horizon must belong uniquely to the (1-1) family,
which contains the Schwarzschild solution itself. The
Schwarzschild solution is characterized by two parameters: the
mass M of the black hole, plus the trivial ggo normalization at
infinity. So in the higher-derivative theory, there is just one
“non-Schwarzschild” (1,-1) parameter.
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Away from Schwarzschild in the (1,-1) family

Li, Perkins, Pope & K.S.S., in preparation

Considering variation of this “non-Schwarzschild” parameter away
from the Schwarzschild value, it is clear that changing it has to do
something to the solution at infinity. For a solution assumed to
have a horizon, and holding R = 0, the only thing that can happen
initially is that the rising exponential is turned on, i.e. asymptotic
flatness is lost. So, for asymptotically flat solutions with a horizon
in the vicinity of the Schwarzschild solution, the only spherically
symmetric static solution is Schwarzschild itself.

This conclusion is formalized by considering infinitesimal variations
of a solution away from Schwarzschild and proving a no-hair
theorem for the linearized equation in the variation. This can
successfully be done for coefficients « that are not too large (i.e.
for spin-two masses my that are not too small). One concludes
that the Schwarzschild black hole is at least in general isolated as
an asymptotically flat solution with a horizon.
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Non-Schwarzschild Black Holes

Lii, Perkins, Pope & K.S.S., PRL 114, 171601 (2015); arXiv 1502.01028

Now the question arises what happens when one moves a finite
distance away from Schwarzschild in terms of the (1,-1)
non-Schwarzschild parameter. Does the loss of asymptotic flatness
persist, or does something else happen, with solutions arising that
cannot be treated by a linearized analysis in deviation from
Schwarzchild?

This can only be answered numerically. In consequence of the
trace no-hair theorem, the assumption of a horizon together with
asymptotic flatness requires R = 0 for the solution, so the
calculations can effectively be done in the R — C? theory with

B =0, in which the field equations thankfully can be reduced to a
system of two second-order equations.
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The study of non-Schwarzschild solutions is more easily carried out
with a metric parametrization

d 2
ds? = —B(r)d? + ?rr) + r2(d6? + sin? 0d$?) ,

i.e. by letting A(r) = 1/f(r).

For B(r) vanishing linearly in r — ry for some ry, analysis of the
field equations shows that one must then also have f(r) similarly
linearly vanishing at ry, and accordingly one has a horizon. One
can thus make near-horizon expansions

B(r) = c|(r—rn)+h(r—rn)+hs(r—r)>+--
f(r) = A(r—n)+h(r—n)>+i(r—rn)’+--

and the parameters h; and f; for i > 2 can then be solved-for in
terms of ry and f;. For the Schwarzschild solution, one has
fi= 1/r0, so it is convenient to parametrize the deviation from
Schwarzschild using a non-Schwarzschild parameter § with

1
f=tt0
n




The task then becomes that of finding values of § # 0 for which
the generic rising exponential behavior as r — oo is suppressed.
What one finds is that there do indeed exist asymptotically flat
non-Schwarzschild black holes provided the horizon radius ry
exceeds a certain minimum value rf"®. For a = 3, one finds the

following phases of black holes:

M
05 __,-< -----
r
0.8 1.0 14 0
-05
-10

Black-hole masses as a function of horizon radius ry, with a branch point
at réni“ ~ (0.876; the dashed line denotes Schwarzschild black holes and
the solid line denotes non-Schwarzschild black holes.
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Properties of the non-Schwarzschild black holes

One can see from the mass M versus horizon radius ry that there is
a maximum mass M™max = %rémn > 0 for the non-Schwarzschild
branch of black holes. The non-Schwarzschild black hole is found
to have a spin-two falling ggo Yukawa term —C%_e_’"” with a
coefficient ¢~ that is of the same sign as M. This sign is opposite
to that expected from the linearized theory's coupling to a standard
positive-energy shell source. Otherwise, the solution extending
from the origin out to spatial infinity looks generally similar to the
Schwarzschild black hole and belongs to the (1,-1) solution class.

(B(r).f(r))

T

Non-Schwarzschild black hole for M ~ .276 with a horizon at r = 1. The
dashed line denotes B(r) and the solid line denotes f(r) = 1/A(r). 2434



Note that the mass M of the non-Schwarzschild black hole
decreases as ry increases. Consequently, there is a horizon radius
rin=0 ~ 1.143 at which it becomes massless. The relation between
the mass M and the Hawking temperature T is shown by

Non-Schwarzschild black hole mass M as function of temperature T. The
dashed line denotes Schwarzschild black holes and the solid line denotes

non-Schwarzschild black holes

The specific heat C = OM/OT is negative for both Schwarzschild
and non-Schwarzschild black holes. At a given temperature T,
C is more negative for the non-Schwarzschild black hole.
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(2,2) solutions without horizons

For asymptotically flat solutions with spin-two Yukawa coefficient
c®>~ <0, i.e. of the same sign as that found in the linearized theory
when coupled to positive-energy sources, one finds instead
numerical solutions that can continue on in to mesh with the (2,2)
family obtained from Frobenius asymptotic analysis around the
origin. Such solutions have no horizon; they were investigated
numerically in the theory with my = mqg (i.e. « = 353) by Bob

Holdom. &. Holdom, Phys.Rev. D66 (2002) 084010; hep-th /0206210

Horizonless solution with ¢; < 0, behaving as r? in both A(r) and B(r) as
r—0.

26
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» There is no horizon in this set of minimally-coupled,
Yukawa-corrected solutions. Solutions asymptotically
approach the Schwarzschild solution for large r, but differ
strikingly in what would have been the inner-horizon region.

This is in accord with generic conclusions from the parameter
count for solutions with horizons and from the linearized
no-hair theorems. Generic asymptotically free solutions have
to break free from the parameter-count restriction (three) for
solutions with horizons, and need the full parameter set (six)
found for (2,2) family solutions. For a generic R — C2 + R?
theory solution, there will be both spin-two and spin-zero
falling Yukawa terms as one approaches spatial infinity.
Together with the trivial time-rescaling parameter and the
mass M, this makes four welcome parameters. One then needs
two more solution parameters to ensure cancellation of the
unwelcome rising spin-two and spin-zero exponential terms.



» Finding such horizon-free solutions is computationally
intricate. The most secure way to find them is to use the
shooting method coming in from large radii, started out using
the linearized solutions at spatial infinity and then matching
on to a shooting solution integrated outwards, started out
using the (2,2) family series solution near the origin.

> Although there is a curvature singularity at the origin in the
(2,2) class of solutions (e.g. for this class, one has
Ry po RHP = 20352r_8 + --+), this is a timelike singularity,
unlike the spacelike singularity of the Schwarzschild solution.
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Stability Issues

What does this all mean for “physical” black holes? The above
static analysis does not yet consider the issue of stability, i.e. what
happens to time-dependent solutions obtained from perturbations
away from the static solutions. Since no closed-form version of the
exact non-Schwarzschild (1,-1) or (2,2) solutions is available, this
is not an easy question to address. However, one can get some
information by considering the stability of the Schwarzschild
solution itself within the higher-derivative theory.

» In the R + R? theory, study of the normal modes about the
Schwarzschild solution shows it to be stable. This is perhaps
not surprizing, since that theory is classically equivalent to
ordinary Einstein gravity plus a scalar field with a peculiar
potential, for which the ordinary GR stability considerations
and no-hair theorem should apply. whitt, starobinsky
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» When the (Weyl)? term is present in the action, however, the
stability situation is different: there may be a phase structure,
depending on the value of y = "A’;é‘l/’ where my is the spin-two

particle mass, M is the mass of the black hole and Mp is the

Planck mass. For pn > 1, i.e. “largeish” black holes, one

obtains stability for the Schwarzschild solution. For <1, on

the other hand, stability is not guaranteed.

» This was studied by Brian Whitt phys. rev. D32 (1985) 370, who
showed that the R + (Weyl)? theory should be stable for
1 > 0.44 but raised the question of whether an instability
could set in for ;1 < 0.44. Indeed, he suggested that there
could be a bifurcation of the spherically symmetric solution
set into two branches at this value.
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» Whitt's detailed calculation seemed to show, nonetheless, that
there was still no instability, at least in a static perturbation
analysis (i.e. for k = 0 momentum modes).

» This analysis has, however, been challenged in a paper by Y.S.
Myung physRev. Dss (2013) 2, 024039; andv1306.3725 Who argues that Whitt
did not do the Schwarzschild stability analysis properly and
instead does find, from a nonstatic k # 0 analysis, an
instability of the Schwarzschild solution for i < O(1). This is
similar to Schwarzschild instabilities found in massive gravity

theo”es Babichev & Fabbri; Brito, Cardoso & Pani

This raises the possibility of a phase structure for black hole
solutions in higher-derivative gravity. The entropy of a
non-Schwarzschild black hole of a given mass turns out to be less
than that of the Schwarzschild black hole of the same mass. So
could there be a hierarchy of stabilities involving the Schwarzschild
and non-Schwarzschild black holes and the (2,2) solution with a
naked singularity?
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R + R? theory

The massive spin-two ghost can be eliminated at the classical level
by setting @ — 0, for which mp, — oco. Choosing 5 > 0 makes
the spin-zero mode non-tachyonic, and the resulting

[ d*x/—g(—R + BR?) theory is equivalent to GR coupled to a
non-ghost scalar field. This remains true at the full nonlinear level
B whitt 1984, With an action (including also a cosmological term)

Iryspin zero = /d4x\ﬁ( R+ BR? = 2A)
o / x5 (~
—62(1 + 286) X(V, 0V 6 + !

557+ 352M)

64
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e One can redefine the scalar field ¢ = (e¢~5/‘/g —1)/25 in order
to produce a scalar Lagrangian with a canonical kinetic term
and a transformed potential —%VH¢V“¢ — V(¢), where

41ﬂ(1 — e*g’/\/g)2 +2Ne 20/V3

e It is thus clear that, for large ¢, the potential V() becomes
very flat. This was the reason for the attractiveness (at times)
of the [ d*x\/—g(—R + BR?) theory for inflation purposes.

A.A. Starobinsky 1980; Mukhanov & Chibisov 1981

V($) =

The coefficient 3 sets the scale for the potential. Restoring a
1/K2 coefficient for the Einstein-Hilbert action [ \/—gR, the
mass of the scalar mode is mg = (6x2B)~L; applications for
inflation typically take this mass scale to be something like
1070 of the Planck scale.
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